Recessive allele l codes for lactose intolerance. People who are recessive homozygous (ll) cannot digest milk; dominant homozygotes (LL) and heterozygotes (Ll) have no problem digesting milk.

Among 200 people from Eastern Mongolia, 18 were unable to digest milk. Assuming that the population does not deviate from the Hardy-Weinberg equilibrium, estimate the frequency of each allele and each genotype:

- $f_r(l) = \frac{18}{200} = 0.09$
- $f_r(L) = 0.90$
- $f_r(ll) = 0.09$
- $f_r(Ll) = 2 \times 0.7 \times 0.3 = 0.42$
- $f_r(LL) = 0.42$

Genetic Drift

- Changes of allele frequencies due to sampling errors
- Generation 1: $f_r(G) = f_r(P) = 0.5$
- Generation 2: $f_r(G) = 0.65$, $f_r(P) = 0.45$

Founder effect

- One of the founders: Altagracia
- Heterozygous for a single base substitution in 5-alpha-reductase-2 autosomal gene
- 5-alpha-reductase-2 is an enzyme that converts testosterone into dehydrotestosterone necessary for testes development
- Low activity of this enzyme in homozygotes
- XY individuals develop as females until puberty

Genetic Drift: allele frequency change

- Drift has no direction
- Evolutionary change accumulates with time
- Causes loss of genetic variation in a population
- Increase of genetic difference between populations
- Two special forms of drift: founder effect and bottleneck
Guevedoces = “penis at 12”

Ectrodactyly, aka lobster claw syndrome

Vadoma -- a tribe in the west of Zimbabwe

Habitat fragmentation and founder effect in Guenons

Blood groups

Frequency of B allele in human populations

Frequency of A allele in human populations

Bottle Neck - a type of genetic drift caused by a sudden change of population size

Probability of Allele Fixation and Population Size
Probability of allele fixation

fr(A) = 0.5, fr(a) = 0.5 N=8

#genes = 2N = 16

\[P(\text{all A}) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \ldots = \left(\frac{1}{2}\right)^{2N} = 0.000015 \]

\[P(\text{all a}) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \ldots = \left(\frac{1}{2}\right)^{2N} = 0.000015 \]

\[P(\text{fixed}) = P(\text{all A}) + P(\text{all a}) = 2 \times \left(\frac{1}{2}\right)^{2N} = 2(0.5)^{16} \]

= 0.00003

fr(A) = 0.94, fr(a) = 0.06 N=8

\[P(\text{all A}) = \left(\frac{94}{100}\right)^{16} = 0.37 \]

\[P(\text{all a}) = \left(\frac{6}{100}\right)^{16} \approx 0.0000\ldots \]

\[P(\text{fixed}) = 0.37 \]

Gene flow

- Increases genetic variation within a population
- Decreases genetic difference between populations

Relative Genetic Contribution

N=3,000 fr(A)=0.4 fr(a)=0.6

N=5,000 fr(A)=0.9 fr(a)=0.1

Add weights:

\[fr(A)_{\text{new}} = \frac{(3 \times 0.4 + 5 \times 0.9)}{8} = 0.71 \]

\[fr(a)_{\text{new}} = 0.29 \]

Mutations

- Changes in the sequence of a DNA molecule; introduce new alleles into a population

Types of Mutations

- Silent (synonymous)
- Missense
- Nonsense (introduce stop codon)
- Indels (insertions/deletions) → frame shift

New codons: A T G A A G C A C G T