Population genetics

Breeding population - a group of randomly mating individuals relatively isolated from the other members of the same species.

Breeding population - a group of individuals where one is the most likely to find a mate

Population genetics is the study of the allele and genotype frequency distribution and change in a population

Finding Allele frequencies from the genotype frequencies

$$
\begin{gathered}
\operatorname{fr}(A)=\frac{2 x \# A A+\text { \#Aa }}{2 \times N}= \\
=\frac{2 \cdot \# A A}{2 N}+\frac{\# A a}{2 N}=\operatorname{fr}(A A)+0.5 f r(A a) \\
\operatorname{fr}(a)=\frac{2 \times \# a a+\# A a}{2 \times N}= \\
=\operatorname{fr}(a a)+0.5 f r(A a)
\end{gathered}
$$

Allele frequencies

In a population of 75 individuals:
\#RR $=20$
\#RW= 10
\#WW = 45$f r(R)=\frac{2 \times \text { \#RR }+ \text { \#RW }}{2 \times(\text { total number of people })}$ $=\frac{2 \times 20+10}{2 \times 75}=\frac{50}{150}=0.33$

$$
\mathrm{fr}(W)=1-0.33=0.67
$$

Find allele frequencies for each of the following sets of numbers:

1. $\# A A=20$
\# $\mathrm{Aa}=40$
$\#$ aa $=140$
2. $\begin{aligned} \operatorname{fr}(A A) & =0.5 \\ \operatorname{fr}(A a) & =0.4\end{aligned}$
3. $\mathrm{fr}(\mathrm{bb})=0.7$
$\mathrm{fr}(\mathrm{Bb})=0.2$

$$
\begin{aligned}
& p+q=1 \\
& \text { Hardy-Weinberg theorem: applications } \\
& \begin{array}{l}
\text { 1. Knowing frequency of one allele/genotype, estimate } \\
\text { frequencies of the other alleles and genotypes } \\
f r(B)=0.7=p \quad \operatorname{fr}(b)=q=1-p=1-0.7=0.3 \\
\mathrm{fr}(\mathrm{BB})=\mathrm{p}^{2}=0.7^{2}=0.49 \\
\mathrm{fr}(\mathrm{Bb})=2 \mathrm{pq}=2 \times 0.7 \times 0.3=0.42 \\
\mathrm{fr}(\mathrm{bb})=\mathrm{q}^{2}=0.3^{2}=0.09 \\
\text { 2. Testing if a population is a Hardy-Weinberg } \\
\text { population (randomly mating, not affected by migration, } \\
\text { selection, etc.) } \\
\text { 3. Modeling evolutionary change }
\end{array}
\end{aligned}
$$

Hardy-Weinberg theorem

$$
p+q=1 \quad 0 \leq p \leq 1
$$

$$
\text { If } \mathrm{fr}(\mathrm{~A})=\mathrm{p} ; \quad \mathrm{fr}(\mathrm{a})=\mathrm{q}_{1 . \text { population is infinitely large }}
$$

Then 2. population is randomly mating

Then 3 3. there is no migration
$\mathrm{fr}(\mathrm{AA})=\mathrm{p}^{2}$
4. no mutations
$\mathrm{fr}(\mathrm{aa})=\mathrm{q}^{2}$
$\mathrm{fr}(\mathrm{Aa})=2 \mathrm{pq}$
5. no selection

Test whether a population is at Hardy-Weinberg equilibrium (randomly mating, is not affected by migration, selection, etc.)

		\square	\square	\square
observed numbers	10	8	2	20

1) find allele frequencies
$f r(R)=\frac{2 \times \text { \#RR + \# RW }}{20 \times 2}=\frac{2 \times 10+8}{40}=0.7$
$\mathrm{fr}(\mathrm{W})=1-0.7=0.3$

Test whether a population is at Hardy-Weinberg equilibrium (randomly mating, is not affected by migration, selection, etc.)

				total
observed numbers	10	8	2	20
expected frequencies	$\begin{gathered} \mathrm{fr}(\mathrm{RR})_{\mathrm{e}}=\mathrm{p}^{2} \\ =0.7^{2}=0.49 \end{gathered}$	$\begin{aligned} & \mathrm{fr}(\mathrm{RW})_{\mathrm{e}}=2 \mathrm{pq} \\ & =2 \times 0.3 \times 0.7= \\ & =0.42 \end{aligned}$	$\begin{aligned} & \mathrm{fr}(\mathrm{WW})_{\mathrm{e}}=\mathrm{q}^{2} \\ & =0.3^{2}=0.09 \end{aligned}$	1

2) find EXPECTED genatype frequencies for given allele frequencies $\mathrm{fr}(\mathrm{R})=0.7=\mathrm{p} . \mathrm{fr}(\mathrm{W})=0.3=\mathrm{q}$

Test whether a population is at Hardy-Weinberg equilibrium (randomly mating, is not affected by migration, selection, etc.)

	RR		RW	WW

3) find EXPECTED number of individuals with each genotype

4) compare OBSERVED and EXPECTED numbers
