Course Notes Graph Theory, Fall 2022 Queens College, Math 334/634 Prof. Christopher Hanusa http://qc.edu/~chanusa/courses/634/22/ ### What is a graph? A graph is made up of dots and lines. A "dot" is called a **vertex** (or **node**, **point**, **junction**) One **vertex** — Two **vertices**. A "line" is called an **edge** (or **arc**), and always connects two vertices. A road map can be thought of as a graph. - Represent each city or intersection as a vertex - Roads correspond to edges. However, a graph is an abstract concept. - ▶ It doesn't matter whether the edge is straight or curved. - ▶ All we care about is which vertices are connected. ### Concept: Matchings #### Suppose that: Erika likes cherries and dates. Frank likes apples and cherries. Greg likes bananas and cherries. Helen likes apples, bananas, dates. A graph can illustrate these relationships. - Create one vertex for each person and one vertex for each fruit. - ightharpoonup Create an edge between person vertex v and fruit vertex w if person v likes fruit w. Question. Is there a way for each person to receive a piece of fruit they like? Answer. Related topics: assignments, perfect matchings, counting questions. ### Concept: Planarity Why does a circuit board look like this? Question. Is graph G planar? - ▶ If so, how can we draw it without crossings? - ▶ If not, then how close to being planar is it? Related topics: planarity, non-planarity stats, graph embeddings Also related to a circuit board: - ▶ Where to drill the holes? - ► How to drill them as fast as possible? Related topics: Traveling Salesman, computer algorithms, optimization #### Chemis-Tree Graphs are used in Chemistry to draw molecules. (isobutane) #### Note: - ► This graph is connected. (Not true in general.) - ► There are no *cycles* in this graph. Connected graphs with no cycles are called **trees**. Trees are some of the nicest graphs. We will work to understand some of their properties. #### Class structure: - Building from basic principles. - ► Lots of definitions! Need to internalize. - Proofs! - Daily homework assignments - Basis of in-class discussion - Feel free to work in groups - ► Standards-based grading **Grade** ←→ **Learning** - Approximately 15 "standards" - Regular assessments throughout (No midterms) - Reassessments possible - ► NEW! Cross-listing of MATH 334 and MATH 634 - Same in-class content - Undergraduates can choose 334 vs 634. - 634: Assessment expectations higher. - 634: Project expectations higher. (More later.) - Both count toward major. Only 634 counts toward Masters. #### To do well in this class: #### Come to class prepared. - Print out and read over course notes. - Read sections before class. #### ► Form good study groups. - Discuss homework and classwork. - Bounce proof ideas around. - You will depend on this group. #### Put in the time. - ► Three credits = (at least) nine hours / week out of class. - Homework stresses key concepts from class; learning takes time. #### Stay in contact. - If you are confused, ask questions (in class and out). - Don't fall behind in coursework or project. - ▶ I need to understand your concerns. ### What is a graph? **Definition**. A graph G is a pair of sets (V, E), where - ▶ *V* is the set of *vertices*. - A vertex can be anything. - ► *E* is the set of *edges*. - \triangleright An edge is an unordered pair of vertices from V. [Sometimes we will write V(G) and E(G).] Example. Let $$G = (V, E)$$, where $V = \{v_1, v_2, v_3, v_4\}$, $E = \{e_1, e_2, e_3, e_4, e_5\}$, and $e_1 = \{v_1, v_2\}$, $e_2 = \{v_2, v_3\}$, $e_3 = \{v_1, v_3\}$, $e_4 = \{v_1, v_4\}$, $e_5 = \{v_3, v_4\}$. We often write $e_1 = v_1 v_2$ with the understanding that order does not matter. **Notation:** # vertices = $|V| = __ = __ .$ # edges = $|E| = __ = __ .$ # How to talk about a graph We say v_1 is **adjacent** to v_2 if there is an edge between v_1 and v_2 . We also say v_1 and v_2 are **neighbors**. Similarly, we would say that edges e_1 and e_2 are **adjacent**. When talking about a vertex-edge pair, we will say that v_1 is incident to/with e_1 when v_1 is an endpoint of e_1 . For now, we will only consider finite, simple graphs. - ▶ G is finite means $|V| < \infty$. (Although infinite graphs do exist.) - ightharpoonup G is simple means that G has no multiple edges nor loops. - ► A loop is an edge that connects a vertex to itself. - Multiple edges occurs when the same unordered pair of vertices appears more than once in E. When multiple edges are allowed (but not loops): called multigraphs. When loops (& mult. edge) are allowed: called pseudographs. ### Degree of a vertex The degree of a vertex v is the number of edges incident with ν , and denoted deg(ν). #### In our example, $$deg(v_1) = \underline{\hspace{1cm}}, \ deg(v_2) = \underline{\hspace{1cm}}, \ deg(v_3) = \underline{\hspace{1cm}}, \ deg(v_4) = \underline{\hspace{1cm}}.$$ If deg(v) = 0, we call v an **isolated vertex**. If deg(v) = 1, we call v an **end vertex** or **leaf**. If deg(v) = k for all v, we call G a k-regular graph. The degree sum of a graph is the sum of the degrees of all vertices. #### Degree sum exploration: Q. What is $$\deg(v_1) + \deg(v_2) + \deg(v_3) + \deg(v_4)$$? Q. How many edges in G? A. $$\sum_{v \in V} \deg(v) =$$ A. $m =$ Q. How are these related? ### Degree sum formula Theorem 1.1.1. $$\sum_{v \in V} \deg(v) = 2m$$. *Proof.* We count the number of vertex-edge incidences in two ways. Vertex-centric: For one v, how many v-e incidences are there? ____. So the total number of vertex-edge incidences in G is _____. Edge-centric: For one e, how many v-e incidences are there? _____. So the total number of vertex-edge incidences in G is ______. Since we have counted the same quantity in two different ways, the two values are equal. \Box Corollary: The degree sum of a graph is always even. # Degree sequence of a graph **Definition**. The **degree sequence** for a graph G is the list of the degrees of its vertices in weakly decreasing order. In our example above, the degree sequence is: ______ Duh. Every simple graph has a degree sequence. Question. Does every sequence have a simple graph? Answer. # Degree sequence of a graph **Definition**. A weakly decreasing sequence of non-negative numbers S is **graphic** if there exists a graph that has S as its degree sequence. Question. How can we tell if a sequence S is graphic? \blacktriangleright Find a graph with degree sequence \mathcal{S} . OR: Use the **Havel-Hakimi algorithm** in Theorem 1.1.2. - ▶ Initialization. Start with Sequence S_1 . - ightharpoonup Step 1. Remove the first number (call it s). - ▶ Step 2. Subtract 1 from each of the next s numbers in the list. - ▶ Step 3. Reorder the list if necessary into non-increasing order. Call the resulting list Sequence S_2 . Theorem 1.1.2. Sequence S_1 is graphic iff Sequence S_2 is graphic. - ▶ Iterate this algorithm until either: - (a) It is easy to see S_2 is graphic. (b) S_2 has negative numbers. Examples: 7765333110 and 6644442 # Proof of the Havel–Hakimi algorithm *Notation:* Define the degree sequences to be: $$\mathcal{S}_1 = (s, t_1, t_2, \dots, t_s, d_1, \dots, d_k).$$ $\mathcal{S}_2 = (t_1 - 1, t_2 - 1, \dots, t_s - 1, d_1, \dots, d_k).$ Theorem. Sequence S_1 is graphic **iff** Sequence S_2 is graphic. *Proof.* (S_2 graphic $\Rightarrow S_1$ graphic) Suppose that S_2 is graphic. Therefore, We will construct a graph G_1 that has S_1 as its degree sequence. Question: Can this argument work in reverse? # Proof of the Havel–Hakimi algorithm *Proof.* (S_1 graphic $\Rightarrow S_2$ graphic) Suppose that S_1 is graphic. Therefore, there exists a graph G_1 with degree sequence S_1 . We will construct a graph with degree sequence S_2 in stages. #### Game plan: $$G_1 \longrightarrow G_2 \longrightarrow G_3 \longrightarrow \cdots \longrightarrow G_a$$ - ightharpoonup Start with G_1 which we know exists. - \blacktriangleright At each stage, create a new graph G_i from G_{i-1} such that - $ightharpoonup G_i$ has degree sequence S_1 . - ▶ The vertex of degree s in G_i is adjacent to MORE of the highest degree vertices than G_{i-1} . - After some number of iterations, the vertex of highest degree s in G_a will be adjacent to the next s highest degree vertices. - ightharpoonup Peel off vertex S to reveal a graph with degree sequence S_2 . # Proof of the Havel-Hakimi algorithm Vertices $S, T_1, \ldots, T_s, D_1, \ldots, D_k$ have degrees $s, t_1, \ldots, t_s, d_1, \ldots, d_k$. (a) Suppose S is not adjacent to all vertices of next highest degree $(T_1 \text{ through } T_s)$. Therefore, there exists a T_i to which S is not adjacent and a D_j to which S is adjacent. (b) Because $\deg(T_i) \geq \deg(D_j)$, then there exists a vertex V such that T_iV is an edge and D_jV is not an edge. - (c) Replace edges SD_j and T_iV with edges ST_i and D_jV . - (d) The degree sequence of the new graph is the same. (Why?) AND S is now adjacent to more T vertices. (Why?) Repeat as necessary.