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Edge Coloring

We can also color the edges of a graph.

Definition. An edge coloring of a graph G is a labeling of the edges
of G with colors. [Technically, a function f : E(G) — {1,2,...,/}]

Definition. A proper edge coloring of G is an edge coloring of G
such that no two adjacent edges are colored the same.

Example. Cube graph ((3):

We can properly edge color [z with colors and no fewer.

Definition. The minimum number of colors necessary to properly
edge color a graph G is called the edge chromatic number of G,
denoted x/(G) = “chi prime".
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Edge coloring theorems

Question. What is a natural lower bound for x'(G)?
Thm 2.2.1:  For any graph G, X'(G) >

Thm 2.2.2: Vizing's Theorem:
For every graph G, x/(G) equals either A(G) or A(G) + 1.

Proof. Hard. (See reference [24] if interested.)

Consequence: To determine \'(G),

Fact: Most 3-regular graphs have edge chromatic number 3.
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Let us prove that it can not be colored with three colors.
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In all cases, it is not possible to edge color with 3 colors, so x/'(G) = 4.
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The edge chromatic number of complete graphs

Goal:  Determine x/(Kj,) for all n.
Vertex Degree Analysis:  The degree of every vertex in K, is
Vizing's theorem implies that x/(K,) = or .

If X' (Kn) = , then each vertex has an edge leaving of each color.
Question. How many red edges are there?
This is only an integer when:

X,(K2n) —

So, the best we can expect is that ,
X (K2n—1) =
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Thm 2.2.3: x'(Kan) =2n—1.  Proof. Use the “turning trick”.

Label the vertices of K3, “ . o
0,1,...,2n—2,x. I AN
. T2 J 2
Connect 0 with x N .
Connect 1 with 2n—2, e
. o o \\,s ot
. . . o0 : o - 7 x
Connect n— 1 with n. 1 1 <
7 2 %Az
\\ \
6 3 .g;;w
\\\\\ \\\\
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The edge chromatic number of complete graphs

Thm 2.2.3: x'(Kan) =2n—1.  Proof. Use the “turning trick”.

Label the vertices of K>, o o
0,1,...,2n-2,x. I o
Connect 0 with x e . . Z
Connect 1 with 2n—2, o s
: JCR—— s e
v N
Connect n— 1 with n. ' ' NN
Now turn the inside edges. ' R
(and again, ...) " bs .P_.x
ot .5—.4

Claim: Each turn, new edges are used.

Proof: Each of the edges is a different “circular length”.

Vertices are at circular distance 1, 3, 5, ..., 4, 2 from each other,
and x is connected to a different vertex each time.
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The edge chromatic number of complete graphs

Theorem 2.2.4:

X/(KZn—l) =2n—1.

This construction also gives a way to edge color K,_1 with 2n — 1

colors—simply delete vertex x!

This is related to the mathematics of combinatorial designs.

Question. ls it possible for six tennis players to play one match per
day in a five-day tournament in such a way that each player plays

each other player once?

Day 1
Day 2
Day 3
Day 4
Day 5

Ox
1x
2X
3x
4x

14
20
31
42
03

23
34
40
01
12

Theorem 2.2.3 proves there is such a tournament for all even numbers.



