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Hamiltonian Cycles

Definition. A Hamiltonian cycle C in a graph G is a cycle
containing every vertex of G .

Definition. A Hamiltonian path P in a graph G is a path
containing every vertex of G .

⋆ Important: Paths and cycles do not use any vertex or edge twice. ⋆

Theorem: If G has a Ham’n cycle, then G has a Ham’n path.
Proof:

An arbitrary graph may or may not contain a Hamiltonian cycle/path.
This is very hard to determine in general!
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Hamiltonian Cycles

Theorem 2.3.5: A snark has no Hamiltonian cycle.

Fact: A snark has an even number of vertices. Why?

Proof: Suppose that G is a snark that
contains a Hamiltonian cycle C , visiting
each vertex once.

When you remove C . . .

Now color G strategically . . .

Careful: The converse is not true!

There exist cubic graphs w/o Ham’n
cycle and that are not snarks.

Example: Book Figure 2.3.4.
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Knight’s Tours

In chess, a knight (N) is a piece that moves in an “L”: two spaces
over and one space to the side.

0ZnZnZ0Z
ZnZ0ZnZ0
0Z0M0Z0Z
ZnZ0ZnZ0
0ZnZnZ0Z
Z0Z0Z0Z0
0Z0Z0Z0Z
Z0Z0Z0Z0

Question. Is it possible for a knight to start on some square and,
by a series of valid knight moves, visit each square on an 8× 8
chessboard once? (How about return to where it started?)

Definition. A path of the first kind is called an open knight’s tour.
A cycle of the second kind is called a closed knight’s tour.
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8× 8 Knight’s Tour

Source: http://www.mayhematics.com/t/8g.htm

Question. Are there any knight’s tours on an m × n chessboard?

http://www.mayhematics.com/t/8g.htm
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The Graph Theory of Knight’s Tours

For any board we can draw a corresponding knight move graph:
Create a vertex for every square on the board and create edges
between vertices that are a knight’s move away.

An open/closed knight’s ←→
tour on the board

A knight move always alternates between white and black squares.
Therefore, a knight move graph is always .
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Knight’s Tour Theorem

Theorem. An m × n chessboard with m ≤ n has a closed knight’s
tour unless one or more of these conditions holds:

1. m and n are both odd.

2. m = 1, 2, or 4.

3. m = 3 and n = 4, 6, or 8.

“Proof” We will only show that it is impossible in these cases.

Case 1. When m and n are both odd,

Case 2. When m = 1 or 2, the knight move graph is not connected.
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Knight’s Tour Theorem

Case 2. When m = 4, draw the knight move graph G .

Suppose there exists a Hamiltonian cycle C in the graph G .

Since
G is bipartite, C must alternate between white and black vertices.

In addition, tint the outer rows of G red and the inner rows blue.
In C , every red vertex is only adjacent to blue vertices.

Since there are the same number of red and blue vertices, C must
also alternate between red and blue vertices.

Therefore: All vertices of C are “white and red” or “black and blue”.
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Knight’s Tour Theorem

Case 3. 3× 4 is covered by Case 2. Consider the 3× 6 board:

Assume that there is a Hamiltonian cycle C in G .

C visits every vertex v and uses two of v ’s incident edges.

If degG (v) = 2, then both of v ’s incident edges in G are in C .

Draw all these “forced edges” that must be in C .

The forced edges include four edges that form a cycle C ′.

This cycle C ′ cannot be a subgraph of any Hamiltonian cycle! ⇒⇐

The 3× 8 case is similar, and for you to explore.

See also: “Knight’s Tours on a Torus”, by J. J. Watkins, R. L. Hoenigman
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