Eulerian Circuits — §3.1

The Origins of Graph Theory

City of Konigsberg in 1736

Lo ;721 nt: Arad. LJZ.-Z;m W_ZEA 774

Question. Is it possible to start somewhere, cross all seven bridges
exactly once, and return to where you started?

We can model this
with a graph:

Equiv. Question. Can we draw this graph without lifting our pencil?
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Pseudographs

This is not a graph—it's a pseudograph.
For this section, we allow multiple edges and loops.

Types of “walks” in pseudographs:

Repeat | Repeat Open Closed
Vertices? | Edges? | A1 # A, Al = A,
No No path cycle
Yes No trail circuit

Yes Yes walk closed walk

We need to update a few of our definitions.
Definition. The length of a “walk” is the number of edges involved.

Remark. In a simple graph, the smallest cycle possible is length 3.
In a pseudograph, there may exist cycles of length

Definition. The degree of a vertex A is the number of edges
incident with A; loops count twice!
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Eulerian Circuits

Definitions.
An Eulerian circuit C in G is a circuit containing every edge of G.

An Eulerian trail T in G is a trail containing every edge of G.

T or F: A graph with an Eulerian circuit has an Eulerian trail.

The Konigsberg Is there an Eulerian circuit in
bridge problem the corresponding pseudograph?
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Characterization of Graphs with Eulerian Circuits

There is a simple way to determine if a graph has an Eulerian circuit.

Theorems 3.1.1 and 3.1.2. Let G be a pseudograph that is
connected™ except possibly for isolated vertices.

G has an Eulerian circuit <= the degree of every vertex is even.

Question. What about the Konigsberg bridge pseudograph?

(=) Euler, 1736. Given an Eulerian circuit C, each time a vertex
appears in the circuit, there must be an “in edge” and an
“out edge”, so the total degree of each vertex must be even.

(«=) Hierholzer, 1873. This is harder; we need the following lemma.
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Proof of Lemma 3.1.3

Lemma 3.1.3. If the degree of every vertex in a pseudograph is
even, then every non-isolated vertex lies in some circuit in G.

Proof. Build a trail starting at any non-isolated vertex A in G.

When the trail arrives at a vertex B, what can we say about the
number of edges incident to B not yet traversed by the trail?

So there is some edge to follow out of B; take it.

The trail must eventually return to A, giving us a circuit.
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Proof of Theorem 3.1.2

Every vertex in G has even degree = G has an Eulerian circuit
Find the longest circuit C in G. If C uses every edge, we are done.
Otherwise, it doesn't; we will aim to contradict the maximality of C:

Create H from G by deleting all edges of C & any isolated vertices.
Then H is a pseudograph where

C and H must share a vertex A because
Write C as C = - - - e1Aey - - -.

Find a circuit D in H through A. (Why?7)

Write D as D = --- f{Afy---. No edges of D repeat nor are they in C.

Define a new circuit C' = - - - e;]Afh--- A&y - - -

C’ is a longer circuit in G than C, contradicting C's maximality. [J
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Other related theorems

Theorem 3.1.6. Let G be a connected® pseudograph. Then,

G has an Eulerian trail < G has exactly two vertices of odd degree.

Proof. Let x and y be the two vertices of odd degree.

Add edge xy to G.
Now G + xy is a pseudograph

By Theorem 3.1.2, there exists an Eulerian circuit in G + xy.
Remove xy from the circuit and you have an Eulerian trail in G.

Consequence. When drawing a picture without lifting your pencil,
start and end at the vertices of odd degree!
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