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The Six Color Theorem

Theorem. Let G be a planar graph.
There exists a proper 6-coloring of G .

Proof. Let G be a the smallest planar graph (by number of vertices)
that has no proper 6-coloring.

By Theorem 8.1.7, there exists a vertex v in G
that has degree five or less. G \ v is a planar
graph smaller than G , so it has a proper 6-coloring.

Color the vertices of G \ v with six colors; the neighbors
of v in G are colored by at most five different colors.

We can color v with a color not used to color the neighbors of v , and
we have a proper 6-coloring of G , contradicting the definition of G .
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The Five Color Theorem

Theorem. Let G be a planar graph.
There exists a proper 5-coloring of G .

Proof. Let G be a the smallest planar graph (by number of vertices)
that has no proper 5-coloring.

By Theorem 8.1.7, there exists a vertex v in G
that has degree five or less. G \ v is a planar
graph smaller than G , so it has a proper 5-coloring.

Color the vertices of G \ v with five colors; the neighbors
of v in G are colored by at most five different colors.

If they are colored with only four colors,
we can color v with a color not used to color the neighbors of v , and
we have a proper 5-coloring of G , contradicting the definition of G .
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The Kempe Chains Argument

Otherwise the neighbors of v are all colored differently.

We will modify the coloring on G \ v so only four colors are used.

Construct the subgraphs H1,3 and H2,4 of G \ v as follows:
Let V 1,3 be the set of vertices in G \ v colored with colors 1 or 3.
Let V 2,4 be the set of vertices in G \ v colored with colors 2 or 4.
Let H1,3 be the induced subgraph of G on V 1,3. (Define H2,4 similarly)
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The Kempe Chains Argument

Definition. A Kempe chain is a path in G \ v between two
non-consecutive neighbors of v such that the colors on the vertices
of the path alternate between the colors on those two neighbors.

In our example, v3 → v7 → v8 → v9 → v10 → v1 is a Kempe chain:
colors alternate between red and green & v1 and v3 not consecutive.

For any two non-consecutive neighbors of v , (such as: v2 and v4.)
We ask: Are v2 and v4 in the same component of H2,4?

▶ If they are, there is a Kempe chain between v2 and v4.

▶ If not, we can swap colors 2 and 4 in one component C of H2,4.
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The Kempe Chains Argument

Claim. Swapping colors in C is still a proper coloring of G \ v .

Proof. We need to check that this recoloring is still proper. The only
adjacencies we have to check are within C and with neighbors of C.

C is a bipartite graph with vertices of color 2 and 4.

Swapping colors does not change this. Adjacent vertices in the
newly colored C will be colored differently.

By construction, neighboring vertices in G \ C are not colored 2 or 4,
so they do not present any conflicts before AND after recoloring. □
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The Kempe Chains Argument

So either there is a Kempe chain between v2 and v4 or we can
swap colors so that v ’s neighbors are colored only using four colors.

Similarly, either there is a Kempe chain between v1 and v3 or we
can swap colors to color v ’s neighbors with only four colors.

Question. Can we have both a v1-v3 and a v2-v4 Kempe chain?
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There are no edge crossings in the graph drawing, so there would
exist a vertex .

This can not exist, so it must be possible to swap colors and be
able to place a fifth color on v , contradicting the definition of G .
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