Thought exercise — §2.2

Counting integral solutions

Question: How many non-negative integer solutions are there of
x1 + X2 + x3 + x4 = 107
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Counting integral solutions

Question: How many non-negative integer solutions are there of
X1+ x2 + x3 + x4 = 107

» Give some examples of solutions.

» Characterize what solutions look like.

» A combinatorial object with a similar flavor is:

In general, the number of non-negative integer solutions to
x1+x+ - +x,=kis

Question: How many positive integer solutions are there of
x1 + xo + x3 + x4 = 10, where x4 > 37
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The sum principle

Often it makes sense to break down your counting problem into
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The sum principle

Often it makes sense to break down your counting problem into
smaller, disjoint, and easier-to-count sub-problems.

Example. How many integers from 1 to 999999 are palindromes?

Answer: Condition on how many digits.

» Length 1: » Length 4:
» Length 2: » Length 5,6:
> Length 3: » Total:

% Every palindrome between 1 and 999999 is counted once.

This illustrates the sum principle:

Suppose the objects to be counted can be broken into k disjoint
and exhaustive cases. If there are n; objects in case j, then there
are ny + np + - - - + ng objects in all.
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Counting pitfalls

When counting, there are two common pitfalls:
» Undercounting

» Often, forgetting cases when applying the sum principle.
» Ask: Did | miss something?

» Overcounting

» Often, misapplying the product principle.
» Ask: Do cases need to be counted in different ways?
» Ask: Does the same object appear in multiple ways?

Common example: A deck of cards.
There are four suits: Diamond <>, Heart ©, Club &, Spade &.
Each has 13 cards: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2.

Example. Suppose you are dealt two diamonds between 2 and 10.
In how many ways can the product be even?
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Overcounting

Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the
face-up card be a Heart ©O7
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Example. In Blackjack you are dealt 2 cards: 1 face-up, 1 face-down.
In how many ways can the face-down card be an Ace and the
face-up card be a Heart ©O7

Answer: There are __ aces, so there are _ choices for the down card.
There are __ hearts, so there are choices for the up card.
By the product principle, there are 52 ways in all.

Except:

Remember to ask: Do cases need to be counted in different ways?



Overcounting — §1.2

Overcounting
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of adjacent elements equal?
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Counting the complement

Q1: How many 4-lists taken from [9] have at least one pair
of adjacent elements equal?
—Compare this to—
Q2: How many 4-lists taken from [9] have no pairs
of adjacent elements equal?

What can we say about:

Q1: Q2:
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that you are dealt a full house?

[ Three cards of one type and two cards of another type.] 555 K K
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Poker hands

Example. When playing five-card poker, what is the probability
that you are dealt a full house?

[ Three cards of one type and two cards of another type.] 555 K K

Game plan:
» Count the total number of hands.

» Count the number of possible full houses. # of ways
» Choose the denomination of the three-of-a-kind.
» Choose which three suits they are in.
» Choose the denomination of the pair.
» Choose which two suits they are in.
» Apply the multiplication principle. Total:

» Divide to find the probability.

3744 0
2598960 0.14%
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