
Bijections — §1.3 27

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A bijection pairs up the elements of A and B.

Example. The set A of subsets of {s1, s2, s3} are in bijection with
the set B of binary words of length 3.

Set A:
{

∅, {s1},{s2},{s1, s2},{s3},{s1, s3},{s2, s3},{s1, s2, s3}
}

Bijection: ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Set B:
{
000, 100, 010, 110, 001, 101, 011, 111

}
Rule: Given a ∈ A, (a is a subset), define b ∈ B (b is a word):

Difficulties:

▶ Finding the rule

(requires rearranging, ordering)

▶ Proving it is a bijection

(requires logical reasoning)

.



Bijections — §1.3 27

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A bijection pairs up the elements of A and B.

Example. The set A of subsets of {s1, s2, s3} are in bijection with
the set B of binary words of length 3.

Set A:
{

∅, {s1},{s2},{s1, s2},{s3},{s1, s3},{s2, s3},{s1, s2, s3}
}

Bijection: ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕

Set B:
{
000, 100, 010, 110, 001, 101, 011, 111

}

Rule: Given a ∈ A, (a is a subset), define b ∈ B (b is a word):

Difficulties:

▶ Finding the rule

(requires rearranging, ordering)

▶ Proving it is a bijection

(requires logical reasoning)

.



Bijections — §1.3 27

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A bijection pairs up the elements of A and B.

Example. The set A of subsets of {s1, s2, s3} are in bijection with
the set B of binary words of length 3.

Set A:
{

∅, {s1},{s2},{s1, s2},{s3},{s1, s3},{s2, s3},{s1, s2, s3}
}

Bijection: ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
Set B:

{
000, 100, 010, 110, 001, 101, 011, 111

}
Rule: Given a ∈ A, (a is a subset), define b ∈ B (b is a word):

Difficulties:

▶ Finding the rule

(requires rearranging, ordering)

▶ Proving it is a bijection

(requires logical reasoning)

.



Bijections — §1.3 27

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A bijection pairs up the elements of A and B.

Example. The set A of subsets of {s1, s2, s3} are in bijection with
the set B of binary words of length 3.

Set A:
{

∅, {s1},{s2},{s1, s2},{s3},{s1, s3},{s2, s3},{s1, s2, s3}
}

Bijection: ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
Set B:

{
000, 100, 010, 110, 001, 101, 011, 111

}
Rule: Given a ∈ A, (a is a subset), define b ∈ B (b is a word):

Difficulties:

▶ Finding the rule

(requires rearranging, ordering)

▶ Proving it is a bijection

(requires logical reasoning)

.



Bijections — §1.3 27

Introduction to Bijections

Goal: Prove that two sets A and B are of the same size.

Tool: A bijection pairs up the elements of A and B.

Example. The set A of subsets of {s1, s2, s3} are in bijection with
the set B of binary words of length 3.

Set A:
{

∅, {s1},{s2},{s1, s2},{s3},{s1, s3},{s2, s3},{s1, s2, s3}
}

Bijection: ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕
Set B:

{
000, 100, 010, 110, 001, 101, 011, 111

}
Rule: Given a ∈ A, (a is a subset), define b ∈ B (b is a word):

Difficulties:

▶ Finding the rule (requires rearranging, ordering)

▶ Proving it is a bijection (requires logical reasoning).



Bijections — §1.3 28

What is a Function?

Reminder: A function f from A to B (write f : A → B)
is a rule where for each element a ∈ A, f (a) is defined to be
an element b ∈ B (write f : a 7→ b).

▶ f is well-defined if for all a ∈ A, f (a) ∈ B and is unambiguous.

▶ A is called the domain. (We write A = dom(f ))

▶ B is called the codomain. (We write B = cod(f ))

▶ The range of f is the set of values that f takes on:

rng(f ) =
{
b ∈ B : f (a) = b for at least one a ∈ A

}
Example. Let S be the set of 3-subsets of [n] and let L be the set of
3-lists of [n]. Then define f : S → L to be the function that takes a
3-subset {i1, i2, i3} ∈ S (with i1 ≤ i2 ≤ i3) to the list (i1, i2, i3) ∈ L.

Question: Is f well-defined? Is rng(f ) = L?
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What is a Bijection?

Definition: A function f : A → B is one-to-one (an injection) when

For each a1, a2 ∈ A, if f (a1) = f (a2), then a1 = a2.

Equivalently,

For each a1, a2 ∈ A, if a1 ̸= a2, then f (a1) ̸= f (a2).

“When the inputs are different, the outputs are different.” (picture)

Definition: A function f : A → B is onto (a surjection) when

For each b ∈ B, there exists some a ∈ A such that f (a) = b.

“Every output gets hit.”

Definition: A function f : A → B is a bijection if it is both
one-to-one and onto.

The function from the previous page is .

Give an example of a function that is onto and not one-to-one.
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Proving a Bijection

Example. Use a bijection to prove that
(n
k

)
=

( n
n−k

)
for 0 ≤ k ≤ n.

Proof. We first find two sets of those sizes:

Let A be the set of k-subsets of [n] and (Size = )

Let B be the set of (n − k)-subsets of [n]. (Size = )

Step 1: Find a candidate bijection.

Strategy. Try out a small (enough) example. Try n = 5 and k = 2.
{1, 2}, {1, 3}
{1, 4}, {1, 5}
{2, 3}, {2, 4}
{2, 5}, {3, 4}
{3, 5}, {4, 5}

 ↔


{1, 2, 3}, {1, 2, 4}
{1, 2, 5}, {1, 3, 4}
{1, 3, 5}, {1, 4, 5}
{2, 3, 4}, {2, 3, 5}
{2, 4, 5}, {3, 4, 5}


Guess: Let S be a k-subset of [n]. Perhaps f (S) = .
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Proving a Bijection

Step 2: Prove f is well defined.

The function f is well defined. If S is any k-subset of [n], then

Step 3: Prove f is a bijection.

Strategy. Prove that f is both one-to-one and onto.

f is 1-to-1:

f is onto:

We conclude that f is a bijection and therefore,
(n
k

)
=

( n
n−k

)
.
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Alternative methods to prove bijections

Prove that a rule f is a bijection by finding f ’s inverse:

▶ Determine a rule for a candidate inverse function g .

▶ Show that f is a well defined function from A to B.

▶ Show that g is a well defined function from B to A.

▶ Show that f and g are two-sided inverses:
Show for all a ∈ A, g(f (a)) = a
and for all b ∈ B, f (g(b)) = b

Then both f and g are bijections.
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Using the inverse function

Example. There exists as many even-sized subsets of [n] as
odd-sized subsets of [n].

even:
{

∅, {s1, s2},{s1, s3}, {s2, s3}
}

odd:
{
{s1}, {s2}, {s3}, {s1, s2, s3}

}
Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

f (S) =

{
S \ {1} if 1 ∈ S

S ∪ {1} if 1 /∈ S

}
.

▶ f is a well defined function from A to B (why?).

▶ f is also a well defined function from B to A (why?).

▶ f 2 is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
n∑

k=0

(−1)k
(n
k

)
= 0.
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even:
{

∅, {s1, s2},{s1, s3}, {s2, s3}
}

odd:
{
{s1}, {s2}, {s3}, {s1, s2, s3}

}
Proof. Let A be the set of even-sized subsets of [n] and let B be
the set of odd-sized subsets of [n]. Consider the function

f (S) =

{
S \ {1} if 1 ∈ S

S ∪ {1} if 1 /∈ S

}
.

▶ f is a well defined function from A to B (why?).

▶ f is also a well defined function from B to A (why?).

▶ f 2 is the identity function.

Therefore, f is a bijection, proving the statement, as desired.

Eyebrow-Raising Consequence:
n∑

k=0

(−1)k
(n
k

)
= 0.
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The binomial theorem — §2.2 34

Pascal’s triangle

Pascal’s identity is the recurrence
(n
k

)
=

(n−1
k

)
+
(n−1
k−1

)
.

With initial conditions we can calculate
(n
k

)
for all n and k.

(n
0

)
= 1 and

(n
n

)
= 1 for all n.

n\k 0 1 2 3 4 5 6 7

0 1
1 1 1
2 1

2

1
3 1

3 3

1
4 1

4 6 4

1
5 1

5 10 10 5

1
6 1

6 15 20 15 6

1
7 1 1

Seq’s in Pascal’s triangle:

1, 2, 3, 4, 5, . . .
(n
1

)
(an = n)

A000027

1, 3, 6, 10, 15, . . .
(n
2

)
triangular

A000217

1, 4, 10, 20, 35, . . .
(n
3

)
tetrahedral

A000292

1, 2, 6, 20, 70, . . .
(2n
n

)
centr. binom.

A000984

Online Encyclopedia of Integer Sequences:
http://oeis.org/

http://oeis.org/
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The binomial theorem — §2.2 35

Binomial Theorem

Theorem 2.2.2. Let n be a positive integer. For all x and y ,

(x + y)n = xn +
(n
1

)
xn−1y + · · ·+

( n
n−1

)
xyn−1 + yn.

In other words: The n-th row of Pascal’s triangle contains the
coefficients of the terms in the expansion of (x + y)n.

Proof. In the expansion of (x + y)(x + y) · · · (x + y), in how many
ways can a term have the form xn−kyk?

Question: What happens when x = 1 and y = −1?
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