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More about partitions

▶ Use greek letters to denote partitions,
often λ (“lambda”), µ (“mu”), and ν (“nu”).

▶ Notation: λ : n = n1 + n2 + · · ·+ nk or λ ⊢ n.

▶ Write the parts of a partition in non-increasing order:

For example, λ : 5 = 3 + 1 + 1, or λ = 311, or λ = 3112, or 311 ⊢ 5.

A pictoral representation of λ = n1n2 · · · nk is its Ferrers diagram, a
left-justified array of dots with k rows, containing ni dots in row i .

Example. The
Ferrers diagram
of 42211 ⊢ 10 is

• • • •
• •
• •
•
•

The conjugate of a partition λ
is the partition λc which
interchanges rows and columns.

Some partitions are
self-conjugate, satisfying λ = λc .
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A generating function for partitions

Our original basketball example shows the generating function for the
number of ways to partition an integer into parts of size 1, 2, or 3 is

1

(1− x)

1

(1− x2)

1

(1− x3)

Now allow parts of any size! Let P(n) be the number of partitions
of the integer n. Then∑

n≥0

P(n)xn =

Notes:

▶ Infinite product! But, for any n only finitely many terms involved.

▶ Understand each factor in the product well to find a
generating function for a subset of partitions.

▶ The generating function is beautiful! But no nice formula!
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A formula for integer partitions

Weisstein, Eric W. “Partition Function P.”
From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/PartitionFunctionP.html

http://mathworld.wolfram.com/PartitionFunctionP.html
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Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n
using only odd parts, on

=
The number of partitions of n

using distinct parts, dn

Investigation: Does this make sense? For n = 6,
o6: d6:

Solution. Determine the generating functions
O(x) =

∑
n≥0 onx

n D(x) =
∑

n≥0 dnx
n
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Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!!!!1!!!11!!

The number of partitions of n
using only odd parts, on

=
The number of partitions of n

using distinct parts, dn

Investigation: Does this make sense? For n = 6,
o6: d6:

Solution. Determine the generating functions
O(x) =

∑
n≥0 onx

n D(x) =
∑

n≥0 dnx
n

See, I told you they were equal. □
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Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition
using left-justified boxes.

A standard Young tableau is a placement of the
integers 1 through n into the boxes, where the num-
bers in both the rows and the columns are increasing.

1

2

6

7

3

4

8

5 9

The hook length h(i , j) of a cell (i , j) is the number
of cells in the “hook” to the right and down.

5

Question: How many SYT are there of shape λ ⊢ n?

Answer:
n!∏

(i ,j)∈λ h(i , j)
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A recurrence relation for P(n, k) (p.78)

We use P(n, ∗) to restrict partitions. Recall P(n, k)= exactly k parts.

Example. Prove this recurrence relation for P(n, k):

P(n, k) = P(n − 1, k − 1) + P(n − k , k)

Question: How many partitions of n are there into exactly k parts?

LHS:

P(n, k)

RHS:

Condition on whether the smallest part is of size 1.

▶ If so, biject as follows to find many partitions:

f :

{
partitions of n into k parts

with smallest part 1.

}
→

{ }
.

▶ If not: biject as follows to find many partitions:

g :

{
partitions of n into k parts
with smallest part ̸= 1.

}
→

{ }
.
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Using conjugation

Theorem 4.4.1. P(n, k) equals P(n, largest part = k)

Proof. The conjugation function f : λ → λc is a bijection

f :

{
partitions of n

into exactly k parts

}
→

{
partitions of n with
largest part of size k.

}
.

The same bijection gives:

Theorem 4.4.2. equals P(n, largest part ≤ k).
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Characterization of self-conjugate partitions

Theorem 4.4.3. P(n, self conjugate) = P(n, distinct odd parts)

Proof. Define a bijection which “unfolds” self-conjugate partitions:

f :

{
self-conjugate

partitions λ of n

}
→

{
partitions µ of n into
distinct odd parts

}
.

▶ Define parts of µ by unpeeling λ layer by layer.

▶ Iteratively remove the first row and first column of λ.

Question: Is f well defined?

Define the inverse function g = f −1 : µ 7→ λ:

▶ Find the center dot of each part µi .

▶ Fold each µi about its center dot.

▶ Nest these folded parts to create λ.

Question: Is g well defined?

Question: Is g(f (λ)) = λ?
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