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More about partitions

> Use greek letters to denote partitions,
often A (“lambda”), u (“mu”), and v (“nu").

» Notation: A:n=ni+n+---+n,or A n.

» Write the parts of a partition in non-increasing order:

For example, A\:5=3+4+1+4+1,or A=311,0r A = 3112 or 311+ 5.

A pictoral representation of A\ = nyny - - - ny is its Ferrers diagram, a
left-justified array of dots with k rows, containing n; dots in row i.

e o o [Iheconjugate of a partition A
is the partition A which
interchanges rows and columns.

Example. The
Ferrers diagram
of 42211+ 10 is

Some partitions are
self-conjugate, satisfying A = A\°.
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A generating function for partitions

Our original basketball example shows the generating function for the
number of ways to partition an integer into parts of size 1, 2, or 3 is
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A generating function for partitions

Our original basketball example shows the generating function for the
number of ways to partition an integer into parts of size 1, 2, or 3 is
1 1 1
(1-x)(1—x2)(1-x3)
Now allow parts of any size! Let P(n) be the number of partitions
of the integer n. Then

Z P(n)x" =

n>0

Notes:
» Infinite product! But, for any n only finitely many terms involved.

» Understand each factor in the product well to find a
generating function for a subset of partitions.

» The generating function is beautiful! But no nice formula!
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A formula for integer partitions

Bruinier and Ono (2011) found an algebraic formula for the partition function P () as a finite sum of algebraic numbers as follows.
Define the weight-2 meromorphic modular form F (z) by

1 Ey(2)-2E,(22)-3E,(32)+ 6 E5 (62)

Fa=5 27)
2 @) G2r62) @
wereq = e?”'%, E, (¢)isan Eisenstein series, and j (g) is a Dedekind eta function. Now define
1
R@=-|——+—|F(),
@ 2nidz 271)/) @ (28)

where z = x + i y. Additionally let O, be any set of representatives of the equivalence classes of the integral binary quadratic form
O, =ax?+bxy+cy*suchthat6|awithg>0andb = 1 (mod 12),and foreach Q (x, y), letag be the so-called CM
pointin the upper half-plane, for which Q (aQ, 1) =0.Then

Tr(n)

Pn)= s
W= 1 (29)
where the trace is defined as
Tr (n) = Z R(ap)- 30)

0e0,

Weisstein, Eric W. “Partition Function P.”
From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/PartitionFunctionP.html


http://mathworld.wolfram.com/PartitionFunctionP.html
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Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!HIIIIaN

The number of partitions of n
using only odd parts, o,

The number of partitions of n
using distinct parts, d,
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Partitions: odd parts and distinct parts

Example. THE FOLLOWING AMAZING FACT!HIIIIaN

The number of partitions of n The number of partitions of n
using only odd parts, o, using distinct parts, d,

Investigation: Does this make sense? For n = 6,
06: de:

Solution. Determine the generating functions
O(x) = 2_nz0 0nx" D(x) = >0 dnX"

See, | told you they were equal. [J
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Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition [ ]
using left-justified boxes.
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A standard Young tableau is a placement of the
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Standard Young Tableaux

Related to some current lines of research in algebra and combinatorics:

A Young diagram is a representation of a partition
using left-justified boxes.

w
w
©

A standard Young tableau is a placement of the

integers 1 through n into the boxes, where the num- z :
bers in both the rows and the columns are increasing. 7
The hook length h(i, ) of a cell (i,/) is the number o1

of cells in the “hook” to the right and down.

Question: How many SYT are there of shape A F n?

n!

[T jyex h02J)

Answer:



Combinatorial proofs involving partitions

A recurrence relation for P(n, k) (p.78)

We use P(n, ) to restrict partitions. Recall P(n, k)= exactly k parts.
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A recurrence relation for P(n, k) (p.78)

We use P(n, ) to restrict partitions. Recall P(n, k)= exactly k parts.
Example. Prove this recurrence relation for P(n, k):

P(n, k)= P(n—1,k—1)+ P(n— k, k)
Question: How many partitions of n are there into exactly k parts?
LHS: P(n, k)

RHS: Condition on whether the smallest part is of size 1.

» If so, biject as follows to find many partitions:
partitions of n into k parts
f: . — .
with smallest part 1.
» If not: biject as follows to find many partitions:

partitions of n into k parts
g: : — .
with smallest part # 1.
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Using conjugation

Theorem 4.4.1. P(n, k) equals P(n, largest part = k)

Proof. The conjugation function f : A — A€ is a bijection

_ partitions of n
" | into exactly k parts

The same bijection gives:

Theorem 4.4.2.

f1

partitions of n with
largest part of size k.

equals P(n, largest part < k).
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Characterization of self-conjugate partitions

Theorem 4.4.3. P(n, self conjugate) = P(n, distinct odd parts)
Proof. Define a bijection which “unfolds” self-conjugate partitions:

' self-conjugate partitions p of n into
" | partitions A of n distinct odd parts

» Define parts of p by unpeeling A layer by layer.
» lteratively remove the first row and first column of A.
Question: s f well defined?

Define the inverse function g = f~1 @y — X:
» Find the center dot of each part ;.
» Fold each u; about its center dot.
» Nest these folded parts to create A.

Question: s g well defined?
Question: s g(f(X)) = A\?
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