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ABSTRACT. Building on work of Tyagi (2005), we present expressions for calculating the corner ion,
edge-center ion, and face-center ion Madelung constants for bulk sodium chloride crystals.

In [1], Crandall gives a historical overview of attempts to evaluate the Madelung constant for bulk
ionic crystals. For sodium chloride he gave an expression for this in terms of the following series.
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(−1)x+y+z√
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≈ −1.74756459463 . . . .

The prime denotes that the sum is over all triples (x, y, z) that are not identically zero. This sum repre-
sents the charge on an ion in an infinite cubic lattice. In [2], Tyagi gives a representation of the Madelung
constant that is the sum of a rapidly converging series and the fundamental constant
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≈ −1.74756459478 . . . ,

which alone agrees with the Madelung constant to ten decimal places.
Madelung constants are defined as single ion values, relating to individual ions in a crystal lattice

[3]. Only in a bulk (infinitely large) crystal can all the single ion values be considered to be equal,
calculable by evaluating Coulombic lattice sums. However, in any real (non-infinite) crystal the single-
ion Madelung Constants for surface ions differ significantly from those within the bulk of the crystal.
Taylor [4] shows that in a finite crystal, the error between the bulk Madelung constant and an ion’s
Madelung constant is inversely proportional to the distance between the ion and the closest face of the
crystal.

In the spirit of Crandall’s work the surface Madelung constants can also be determined using series
expansions. In assembling these series it is important that each Coulombic interaction is counted once
only. The determination of surface Madelung constants may be of practical interest as it as at the surface
where many important and useful reactions occur.

We will consider three different situations related to the cubic lattice—corner ion, edge-center ion, and
face-center ion. In this article, we wish the provide evaluated expressions for approximations to Mcorner,
Medge, and Mface. As in Crandall’s overview, we take a number to be “evaluated” when it can be written
as a numerical combination of fundamental numbers including evaluations of Dirichlet L-series.
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We are interested in the three infinite sums

(3)

Mcorner =
′∑

x,y,z≥0

(−1)x+y+z√
x2 + y2 + z2

Medge =
′∑

−∞<x<+∞
y,z≥0

(−1)x+y+z√
x2 + y2 + z2

Mface =
′∑

−∞<x,y<+∞
z≥0

(−1)x+y+z√
x2 + y2 + z2

.

Again, the prime excludes the case when x, y, and z are all zero. As discussed in Borwein, Borwein, and
Taylor [5], it is not evident that the infinite sum of Equation (1) converges. An easy-to-read discussion
of this non-eventuality is given by Burrows and Kettle in [6]. In fact, the authors of [5] revisit a proof of
Emersleben which shows that when Equation (1) is summed by a method of expanding spheres, the sum
in question diverges. As such, it must not be taken for granted that the sums in Equation (3) converge;
we prove that they do in Theorems 8–10. Our argument incorporates lattice sums in three dimensions,
two dimensions, and one dimension; define

(4) M3 =
′∑

x,y,z

(−1)x+y+z√
x2 + y2 + z2

M2 =
′∑

x,y

(−1)x+y√
x2 + y2

M1 =
′∑
x

(−1)x√
x2

.

In addition, we will refer repeatedly to two convergence results from [5]; we state these results for
completeness after a few definitions.

Definition 1. For every positive integer n, define three finite sums S3(n), S2(n), and S1(n) as follows:

S3(n) =
′∑

−n≤x,y,z≤n

(−1)x+y+z√
x2 + y2 + z2

S2(n) =
′∑

−n≤x,y≤n

(−1)x+y√
x2 + y2

S1(n) =
′∑

−n≤x≤n

(−1)x√
x2

.

Theorem 2 (Theorem 4 in [5]). lim
n→+∞S3(n) exists.

Theorem 3 (Theorem 2 in [5]). lim
n→+∞S2(n) exists.

Remark 4. It is also well known that the doubly infinite alternating harmonic series lim
n→+∞S1(n) con-

verges and evaluates to −2 ln 2.

The significance of these theorems is that the sums in Equation (4) converge when the terms in the
sums are grouped in expanding cubes from the origin. Therefore, it makes sense to discuss these sums
and calculate the appropriate limits. We use a similar strategy to prove the convergence of the sums in
Equation (3).

As these latter sums are subsets of the three-dimensional lattice, it is natural that in addition to con-
vergence results in the three-dimensional lattice, we will need convergence results for subsets of the
two-dimensional lattices as well. We will make use of the following definitions.

Definition 5. For every positive integer n, define S+
2 (n), S++

2 , S+
3 (n), S++

3 , and S+++
3 (n) as follows:

S+
1 (n) =

′∑
0≤y≤n

(−1)y

y
S+

2 (n) =
′∑

−n≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

S++
2 (n) =

′∑
0≤x,y≤n

(−1)x+y√
x2 + y2

S+
3 (n) =

′∑
−n≤x,y≤n

0≤z≤n

(−1)x+y+z√
x2 + y2 + z2

S++
3 (n) =

′∑
−n≤x≤n
0≤y,z≤n

(−1)x+y+z√
x2 + y2 + z2

S+++
3 (n) =

′∑
0≤x,y,z≤n

(−1)x+y+z√
x2 + y2 + z2
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We use a convention that the number of plus signs in the superscript corresponds to how many coordinates
are restricted to be non-negative.

Note that the alternating harmonic series lim
n→+∞S+

1 (n) converges and has limit M1/2 = − ln 2. In

addition, the series M2 = lim
n→+∞S2(n) is studied in many places including [7]; we have

M2 = 4
(√

2 − 1
)
ζ

(
1
2

)
L−4

(
1
2

)
≈ −1.61554262671 . . . ,

where ζ(s) is the Riemann zeta function, and L−4(s) =
∑

x≥0(−1)x(2x+1)−s is a Dirichlet L-function.
We prove each of the following theorems by repartitioning two halves of a lattice into a lattice of full

dimension and a lattice of one smaller dimension. For example, in Theorem6, summing over the upper
half of the xy-plane and the lower half of the xy-plane is the same as summing over the whole xy-plane
and over the x-axis.

Theorem 6. lim
n→+∞S+

2 (n) exists and equals 2
(√

2 − 1
)
ζ
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2

)
L−4
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Proof. We have that

S+
2 (n) =

1
2

[ ′∑
−n≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

+
′∑

−n≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

]

=
1
2

[ ′∑
−n≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

+
′∑

−n≤x≤n
−n≤y≤0

(−1)x+y√
x2 + y2

]

=
1
2

[ ′∑
−n≤x,y≤n

(−1)x+y√
x2 + y2

+
′∑

−n≤x≤n

(−1)x+0

√
x2 + 02

]

=
1
2
[
S2(n) + S1(n)

]
.

The limit lim
n→+∞

1
2

[
S2(n) + S1(n)

]
exists and equals 1

2M2 + 1
2M1. Averaging the exact values for M2

and M1 completes the proof. �

Theorem 7. lim
n→+∞S++

2 (n) exists and equals
(√

2 − 1
)
ζ
(

1
2

)
L−4

(
1
2

) − 3
2 ln 2.

Proof. We have that

S++
2 (n) =

1
2

[ ′∑
0≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

+
′∑

0≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

]

=
1
2

[ ′∑
0≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

+
′∑

−n≤x≤0
0≤y≤n

(−1)x+y√
x2 + y2

]

=
1
2

[ ′∑
−n≤x≤n
0≤y≤n

(−1)x+y√
x2 + y2

+
′∑

0≤y≤n

(−1)y

y

]

=
1
2
[
S+

2 (n) + S+
1 (n)

]
.
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The limit lim
n→+∞

1
2

[
S+

2 (n) + S+
1 (n)

]
exists and equals 1

4M2 + 1
2M1. �

By a similar technique, we prove the convergence of the sums in Equation (3).

Theorem 8. Mface = lim
n→+∞S+

3 (n) exists and is approximately equal to

Mface ≈ − 1
16

− ln 2
8π

− 2π
3

+
1

4
√
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8

)(
3
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)
2π3/2

√
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+ 2(
√

2 − 1)ζ
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)
L−4

(
1
2

)
.

Proof.

S+
3 (n) =

1
2

[ ′∑
−n≤x,y≤n

0≤z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x,y≤n
0≤z≤n

(−1)x+y+z√
x2 + y2 + z2

]

=
1
2

[ ′∑
−n≤x,y≤n

0≤z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x,y≤n
−n≤z≤0

(−1)x+y+z√
x2 + y2 + z2

]

=
1
2

[ ′∑
−n≤x,y,z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x,y≤n

(−1)x+y+0√
x2 + y2 + 02

]

=
1
2
[S3(n) + S2(n)].

The limit lim
n→+∞

1
2

[
S3(n) + S2(n)

]
exists and equals 1

2M3 + 1
2M2. Averaging the exact value for M2

with the approximate value for M3 given by Equation (2) completes the proof. �

Theorem 9. Medge = lim
n→+∞S++

3 (n) exists and is approximately equal to

Medge ≈ − 1
32

− ln 2
16π

− π

3
+

1
8
√

2
+

Γ
(

1
8

)(
3
8

)
4π3/2

√
2

+ 2(
√

2 − 1)ζ
(

1
2

)
L−4

(
1
2

)
− 1

2
ln 2.

Proof.

S++
3 (n) =

1
2

[ ′∑
−n≤x≤n
0≤y,z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x≤n
0≤y,z≤n

(−1)x+y+z√
x2 + y2 + z2

]

=
1
2

[ ′∑
−n≤x≤n
0≤y,z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x≤n
−n≤y≤0
0≤z≤n

(−1)x+y+z√
x2 + y2 + z2

]

=
1
2

[ ′∑
−n≤x,y≤n

0≤z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x≤n
0≤z≤n

(−1)x+0+z

√
x2 + 02 + z2

]

=
1
2
[S+

3 (n) + S+
2 (n)].

The limit lim
n→+∞

1
2

[
S+

3 (n) + S+
2 (n)

]
exists and equals 1

4M3 + 1
2M2 + 1

4M1. �
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Theorem 10. Mcorner = lim
n→+∞S+++

3 (n) exists and is approximately equal to

Mcorner ≈ − 1
64

− ln 2
32π

− π
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+
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16
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+
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(
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)(
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)
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√
2

+
3
2
(
√

2 − 1)ζ
(

1
2

)
L−4

(
1
2

)
− 3

4
ln 2.

Proof.

S+++
3 (n) =

1
2

[ ′∑
0≤x,y,z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

0≤x,y,z≤n

(−1)x+y+z√
x2 + y2 + z2

]

=
1
2

[ ′∑
0≤x,y,z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

−n≤x≤0
0≤y,z≤n

(−1)x+y+z√
x2 + y2 + z2

]

=
1
2

[ ′∑
−n≤x≤n
0≤y,z≤n

(−1)x+y+z√
x2 + y2 + z2

+
′∑

0≤y,z≤n

(−1)0+y+z√
02 + y2 + z2

]

=
1
2
[S++

3 (n) + S++
2 (n)].

The limit lim
n→+∞

1
2

[
S++

3 (n) + S++
2 (n)

]
exists and equals 1

8M3 + 3
8M2 + 3

8M1. �

Just as in [2], the fundamental constants Mcorner, Medge, and Mface agree to ten digits with the true
values, as shown here.

true value approximation

Mcorner −1.34413444476 . . . −1.34413444478 . . .
Medge −1.59123605229 . . . −1.59123605233 . . .
Mface −1.68155361067 . . . −1.68155361075 . . .

This paper describes the evaluation of Madelung constant for corner, edge-center, and face-center ions
for bulk NaCl crystals using appropriate convergent series. The method produces an overall series sum
for the entire crystal lattice by breaking apart and reassembling larger lattices. The values generated by
this approach are in excellent agreement with literature values. The methodology can be extended to
determine bulk Madelung constants for crystal types other than sodium chloride, and to nanoparticles,
including determinations of the surface electrostatic mapping of crystals cleaved so as to expose various
planes.

The authors would like to thank two anonymous referees for their comments and for pointing out
reference [4].
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