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ABACUS MODELS FOR PARABOLIC QUOTIENTS OF AFFINE WEYL GROUPS

CHRISTOPHER R. H. HANUSA AND BRANT C. JONES

ABSTRACT. We introduce abacus diagrams that describe the minimgtheroset representatives of affine
Weyl groups in type€’'/C, B/D, B/B andD/D. These abacus diagrams use a realization of the affine
Weyl groupé due to Eriksson to generalize a construction of James fosyhemetric group. We also
describe several combinatorial models for these parabatitients that generalize classical results in type
A related to core partitions.

1. INTRODUCTION

Let W be an affine Weyl group, and’” be the corresponding finite Weyl group. Then the cosets of
W in W, often denoted?’ /W, have a remarkable combinatorial structure with connestio diverse
structures in algebra and geometry, including affine Grassimans([1], 2], characters and modular repre-
sentations for the symmetric group[3| 4, 5], and crystaébad quantum groups|[6l 7]. Combinatorially,
the elements il can be understood as pairs frcﬁﬁ/W x W by the parabolic decomposition (see e.g.
[8, Proposition 2.4.4]).

In type A, these cosets correspond to a profoundly versatile contsiabobject known as an abacus
diagram. From the abacus diagram, one can read off relataBdinatorial objects such as root lattice
coordinates, core partitions, and the bounded partitisesl in [9], [1] and([2]. The goal of the present
paper is to extend the abacus model to tyBe§ andD, and define analogous families of combinatorial
objects in these settings. Some of these structures arestniotly speaking, new. Nevertheless, we
believe that our development using abacus diagrams unifiesh rof the folklore, and we hope that it
will be useful to researchers and students interested endittg results from typé{ to the other affine
Weyl groups. In this sense, our paper is a companion _to [2Dand [11].

The following diagram illustrates six families of combiogal objects that are all in bijection. Each
family has an action ofi7, a Coxeter length function, and is partially ordered by thaat order. We will
devote one section to each of these objects and give theibijedetween them using type-independent
language.

Canonical  reducef
Root lattice points expressions for min-

imal length coset

representatives

We believe that the abacus diagrams and core partitionstveelurce have not appeared in this generality
before. In fact, we show in Theordm 5111 that our constradiaswers a question of Billey and Mitchell;
see Sectioh 5l3. Several authors have used combinatdeatsd ¢ bounded partitions, and we show how
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these objects are naturally related to abaci in Seflion 7al¥d¢eobtain some formulas for Coxeter length
in Sectior{ 8 that appear to be new. To avoid interrupting ¥p@sition, we postpone a few of the longer
arguments from earlier sections to Secfibn 9. Se€tibn Hilpsuggests some ideas for further research.
In order to simplify the notation, we use a convention of taeding the definitions of our bijections.

We let the output of the functions¥, A, C, R, B) be the corresponding combinatorial interpretation
(Z-permutation, abacus diagram, core partition, canoniedliced expression, bounded partition, re-
spectively), no matter the input. For examplegifs a bounded partition, then its corresponding abacus
diagram isA(p).

2. GEORGE GROUPS ANIZ-PERMUTATIONS
2.1. Definitions. We follow the conventions of Bjorner and Brenti i [8, Chap8].
Definition 2.1. Fix a positive integer and letN = 2n + 1. We say that a bijectiom : Z — Z is a
mirrored Z-permutation if
(2.1) w(i+ N) =w(i)+ N, and

(2.2) w(—1i) = —w(i).
foralli € Z.

Eriksson and Eriksson|[9] use these mirrored permutatmgs/e a unified description of the finite and
affine Weyl groups, based on ideas fram/[12]. It turns out thetcollection of mirrored.-permutations
forms a realization of the affine Coxeter groaf,, where the group operation is composition Zf
permutations. Since the Coxeter groups andD,, are subgroups of,,, every element in any of these
groups can be represented as such a permutation. Greersgs3the theory of full heaps to obtain this
and related representations of affine Weyl groups.

Remark2.2 A mirrored Z-permutationw is completely determined by its action @, 2, ...n}. Also,
Equations[(2]1) and (2.2) imply that(i) = i for all i = 0 mod N.

We have Coxeter generators whose imaged ), w(2),...,w(n)) are given by
si=(1,2,...,i—1,i4+1,i,i+2,...,n) for1<i<n-—1
s§ = (-1,2,3,...,n)
s =(-2,-1,3,4,...,n)
S (1,2,.. —1,n+1)
sP=(1,2,...,n —2,n+1,n+2)

and we extend each of these to an actiorZona (2.1) and[(Z.2). Observe that each of these generators
interchange infinitely many entries @fby Equation[(Z.11).

Theorem 2.3. The collection of mirrored.-permutations that satisfy the conditions in the secondrool
of Table[1 form a realization of the corresponding affine CtelxgroupC B, or D. The collection of
mirrored Z-permutations that additionally satisfy the sorting cdiais in the third column of Tablg 1
form a collection of minimal length coset representativagtie corresponding parabolic quotient shown
in the first column of Tablg 1. The corresponding Coxeter yiashown in the fourth column of Takle 1.

Proof. Proofs can be found in[9] and![8, Section 8]. O

To describe the essential data that determines an mirébeermutation, we observe an equivalent
symmetry.



Type | Conditions orZ-permutation for Coxeter Sorting conditions for minimal lengthCoxeter graph
group elements coset representatives
c/c w(l) <w(2) < - <wn) <wn+1) E-O—O— @
B/B|lieZ:i<0,w()>1=0 mod 2 w(l) <w(2) <--- <wn) <w(n+1) : © . . .
(By (2.2), this is equivalent to requiring the(Comparing with the condition on the previ-
number of negative entries lying to the righbus row, we see that elements®f/B,, are
of position zero is even.) elements of”,, /C,,.)
B/D|lieZ:i<nw(i@)>n+1 = 0|wl) <w2)<- - <wh) <<wh+2) . O @ ®
mod 2
(Comparing with the previous conditions, we
see that elemegts &, /D, arenotneN(:essar
ily elements~o@n/Cn, even thoughi,, is a
subgroup o, .)
D/D|lieZ:i<0,w(@)>1 = 0 m0d2 w(l) <w(2) <--- <wn) <wn+2) H——- @ ®

and i € Z: z<nw()>n—|—1|
mod 2

(Comparing with the previous conditions,
see that elements ab,,/D,, are also elef
ments ofB,,/D,,.)

ve

TABLE 1. Realizations of affine Coxeter groups
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Lemma 2.4. (Balance Lemma])f w is an mirroredZ-permutation, then we have
(2.3) w(i) +w(N —i)=Nforalli=1,2,...n.
Conversely, itv : Z — Zis a bijection that satisfie§ (4.1) ard (2.3), thetis an mirroredZ-permutation.
Proof. Equations[(2]1) and(2.2) imply that for @lle Z, w(i) + w(N — i) = w(i) — w(i — N) =
w(i) — (w(i) — N) = N; in particular, this is true fot <i < n.
To prove the converse, we must show that an infinite pernautati: Z — 7 satisfying [2.1) and (213)
satisfies[(Z]2). Equation (2.1) implies
w(—i—kN)=w(N —i) — (k+1)N
foranyi € {1,..., N} andk > 0. By (2.3), we havev(N — i) = N — w(i) SO
w(—i —kN)=(N —w(i)) — (k+1)N = —w(i) — kN = —(w(i) + kN) = —w(i + kN),
as was to be shown. O

Given a mirroredZ-permutation, we call the ordered sequepcél), w(2),...,w(2n)] thebase win-
dow of w. Since the set of mirrored-permutations acts on itself by composition of functions, have
an action ofi¥’ on the base window notation. The left action interchangdsegavhile the right action
interchanges positions. We have labeled the node of thet@uyeaph ofi¥ that is added to the Coxeter
graph ofi¥ by sg. Then, our cosets have the foridil (wherew € W), and the minimal length coset
representatives all havwg as a unigue right descent.

We can characterize the base windows that arise.

Lemma 2.5. An ordered collectiofw(1),w(2),...,w(2n)] of integers is the base window for an ele-
ment ofC,, if and only if

e w(1),...,w(2n) have distinct residue mal,

e w(l),...,w(2n) are not equivalent td mod N, and

e w(i) +w(N —i)= Nforeachi=1,...,2n=N — 1.
Proof. Given such a collection of integers, extepg(1), ... ,w(2n)] to aZ-permutationw using [2.1),

and setw(:N) = iN forall i € Z. The third condition orw(1), ..., w(2n)] ensures thab is a mirrored
Z-permutation by the Balance Leminal2.4.

On the other hand, each of the three conditions is preserted we apply a Coxeter generatgy so
each element of’, satisfies these conditions by induction on Coxeter length. d

With the conventions we have adopted in Tdble 1, we can atseehat no two minimal length coset
representatives contain the same entries in their baseowind

Lemma 2.6. Supposeu, . .., a, is a collection of integers such that eachis equivalent to mod N.
Then, there exists a unique element B, /D, that containsay, . .., a, among the entries of its base
window{w(1),...,w(2n)}.

Proof. It follows from the Balance Lemnia 2.4 that wheneugiappears among the entries of the base
window ofw € B, thenN — qa; also appears among the entries of the base window. dlence, the
entries of the base window, ...,a,, N —ay,...,N — a,} are completely determined by the

Forw to be a minimal length coset representative, we must or@setkntries to satisfy the condition
shown in the third column of Tablg 1 while maintaining the dition shown in the second column of
Table[1. Leta,, as,...,as, denote the entriesay,...,a,, N — ay,...,N — a,} of the base window
arranged into increasing order&p < as < - -+ < oy

By the condition shown in the third column of Table 1 and|(2wlg have thatv(n) is the only possible
descent among the entries of the base window g0 we have thab(n + 1) < w(n + 2). Also, since
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w(n) < w(n + 2), we haveN — w(n) > N — w(n + 2) which impliesw(n + 1) > w(n — 1) by
2.J). Sincew(l) < w(2) < -+ <w(n) < wn+2) <w(n+3) < --- < w(2n) forms an increasing
subsequence of lengtn — 1, we havew(n + 2) < a4 andw(n — 1) > a, 1. Putting these together,
we find

an—1 <wn—1) <wn+1) <wn+2) < apto.

Thus,w(n + 1) must bea,, or a,11. Therefore, the entries of the base windowuofe En/Dn are
either 1,02, yGn—1,Qp,y Opt1, A2, ,A2n OF A1, G2, ,Ap—1, Apt1, Ay, Apt2, -, G2 Since
an+ant1 = N, precisely one of these satisfies the condition shown ingbersl column of Tablg 1.

Corollary 2.7. Supposev,w’ € W/W. If w # w’ then
{w(1),w(2),...,w2n)} # {w'(1),w'(2),...,w'(2n)}

as unordered sets.

Proof. This follows from the observation that the sorting condiicompletely determine the ordering
of elements in the base window. Considering the third colofhifablel1, this is clear fof’/C and B/ B.
By Lemmd 2.6, we see that this holds 8y D as well. SinceD,,/D,, C B,,/D,, itholds forD/D. O

3. ABACUS DIAGRAMS

3.1. Definitions. We now combinatorialize the set of integers that can appetira base window of a
mirrored Z-permutation as an abacus diagram. These diagrams enfi@cisgly the conditions from
LemmdZ.b.

Definition 3.1. An abacus diagram(or simply abacug is a diagram containingn columns labeled
1,2,...,2n, calledrunners. Runner; contains entries labeled by the integer®’ + ¢ for eachlevel m
where—oco < m < 0.

We draw the abacus so that each runner is vertical, orienitbxd-vso at the top ando at the bottom,
with runnerl1 in the leftmost position, increasing to runrigt in the rightmost position. Entries in the
abacus diagram may be circled; such circled elements desldsads Entries that are not circled are
calledgaps The linear ordering of the entries given by the labeld” + ¢ (for levelm € Z and runner
1 <4 < 2n)is called theeading order of the abacus which corresponds to scanning left to rigptido
bottom. (Observe that there are no entries in the abacusd&bels{mN : m € Z}.)

We say that a bealdis active if there exist gaps (on any runner) that occur priob to reading order.
Otherwise, we say that the beadnactive. A runner is calledlush if no bead on the runner is preceded
in reading order by a gap on that same runner. We say that anssflush if every runner is flush. We
say that an abacus lmlancedif

e there is at least one bead on every runifer 1 < ¢ < 2n, and
e the sum of the labels of the lowest beads on runhard N —iis N foralli =1,2,...,2n.

We say that an abacuseésenif there exists an even number of gaps precedihion reading order.

Definition 3.2. Given a mirroredZ-permutationw, we define4(w) to be the flush abacus whose lowest
bead in each runner is an elemenfof(1), w(2),...,w(2n)}.

Note that this is well-defined by Lemrha 2.5. Alsd(w) is always balanced by Lemrha P.4, so the
level of the lowest bead on runnéis the negative of the level of the lowest bead on run¥er i. In the
rest of the paper, we will implicitly assume that all abaa balanced and flush unless otherwise noted.

Example 3.3. For the minimal length coset representativec 53/03 whose base window is
[-11,-9,—1,8,16, 18], the balanced flush abacus= A(w) is given in Figuré L.
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FIGURE 1. The balanced flush abacus diagrars A(w) for the minimal length coset
representativer = [—11,—-9, —1, 8,16, 18] € C5/C5. The circled entries are the beads;
the noncircled entries are the gaps.

Type | Conditions on abaci

C'/C' | balanced flush abaci

B/B | even balanced flush abaci

B/D | balanced flush abaci

D/D| even balanced flush abaci
TABLE 2. Abaci forW/W

We record some structural facts about balanced flush abhei tised later.
Lemma 3.4. For eachi € Z, we have that entryV + i is a gap if and only if entryV — i is a bead.
Proof. This follows from the definition together with the Balanceni@a[2.4. O

Lemma 3.5. Fix an abacus: and consider a single row of a. If there exists such that the entries in
columnsi and N — ¢ are both beads, then the level of ravis < 0. Similarly, if there exist$ such that

the entries in columnsand N — i are both gaps, then the level of rows > 0. In particular, we cannot
have both of these conditions holding at the same time fovengiow ofa.

Proof. This follows from the Balance Lemnma 2.4. O

Lemma 3.6. For each ofC/C, B/B, B/D and D/D, the mapA is a bijection fromi/ /W to the set
of abaci shown in column 2 of Tallé 2.

Proof. This follows from Corollarf 217 and Lemnia 2.5 f6t/C. In typesB/B andD/ D, the condition
i€Z:i<0,w()>1=0 mod?2

is equivalent to the even condition on abaci. To see thisllrtat the entries in the base window of a
mirrored permutation consist of the labels of the lowestdsda each runner of the abacus. Therefore,
the positive entries of a mirrored permutation that appeérne left of the base window correspond to the
beads lying directly above some bead in the abacus thablibe tright of V in reading order. The set of
beads in the abacus succeedi¥ign reading order has the same cardinality as the set of g&geging

N in reading order by Lemnia 3.4.
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As explained in Lemmia 2.6, the condition
i€cZ:i<n,w()>n+1=0 mod 2

in type E/D only changes the ordering of the sorted entries in the basdowi, not the set of entries
themselves.
The result then follows from Corollafy 2.7. O

3.2. Action of W on the abacus. If we translate the action of the Coxeter generators on teonaid
Z-permutations through the bijectiof, we find that

e s; interchanges columiwith columni+1 and interchanges colun?m —: with column2n—i+1,
forl<i<n-1

e s interchanges columih and2n, and then shifts the lowest bead on coluindown one level
towardsoo, and shifts the lowest bead on colurw up one level towards-oco

e sb interchanges columrisand2 with columns2n — 1 and2n, respectively, and then shifts the
lowest beads on columrsand2 down one level each towards, and shifts the lowest beads on
columns2n — 1 and2n up one level each towardsco

e s¢ interchanges column with columnn + 1

e sDinterchanges columns — 1 andn with columnsn + 1 andn + 2, respectively.

4. ROOT LATTICE POINTS

4.1. Definitions. Following [14, Section 4], lefe;,es,...,e,} be an orthonormal basis of the Eu-
clidean spac& = R™ and denote the corresponding inner product-by. Define thesimple roots «;
and thelongest root« for each typeW,, € {B,,C,, D,} as in [14, page 42]. Th&-spanAp of the
simple roots is called theot lattice, and we may identify” with R @, A g because the simple roots in
typesB,, C;, andD,, are linearly independent.

There is an action ofl” on V' in which s; is the reflection across the hyperplane perpendicular; to
fori=1,2,...,n andsg is the affine reflection

so(v) = v — ((v,@) — 1)%&.

Supposeaw is a minimal length coset representativeWh/W and define theoot lattice coordinate
of w to be the result of acting ahe V by w.

Theorem 4.1. The root lattice coordinate of an elemante W/W is

Z level; (A(w))e;
i=1

wherelevel; (A(w)) denotes the level of the lowest bead in columhthe abacusd(w). Moreover, this
is a bijection to the collections of root lattice coordinatshown in TablEl3.

Proof. Once we identify the Coxeter graphs from Table 1 with thos§L#, it is straightforward to

verify that the action oV on the root lattice is the same as the actioobn the levels of the abacus
given in Sectiof 312.
For example, inB,,/ B,,, we havex,, = e, SO

2

sp(ater + -+ anen) = (are1 + - - + aneyp) — (an — O)W
mny n

Qn

=ajel + -+ ap—1€n—1 — Anén
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and this corresponds to interchanging colummandn + 1 in the abacus by the Balance Lemmal 2.4.
Similarly, reflection through the hyperplane orthogonahtwot of the forme,,_; + e, corresponds to
interchanging columns — 1 andn with columnsn + 1 andn + 2, respectively. The generatofg and

s&’ are affine reflections, so we need to shift the level by 1 asribestin Sectio 3]2. For example, in
C,/Ch, We haver = 2¢; S0

2 a
(@.a)

so(ate; + -+ +apey) = (a1e1 + -+ + aney) — (2a1 — 1)

= (—a1 + 1)e; +azex- - + aney.
Because the number of beads to the righf\oin an abacus i§";" , |level;(A(w))], it follows from

the proof of Lemma_316 that the correspondence between abdcbot lattice coordinates is a bijection
to the images shown in Tallé 3. O

Type | Set of root lattice coordinates
c/C| (ar,...,a,) €Z"

B/B| (a1,...,a,) € Z" such thad " | |a;| is even.
B/D| (ai1,...,an) € Z"
D/D| (ai,...,a,) € Z" such thaly " , |a;| is even.

TABLE 3. Root lattice points foW/W

Example 4.2. For the minimal length coset representative= [—11, -9, —1,8,16,18] € 53/03, the
root lattice coordinates; + 2e; — 2e3 can be read directly from the levels of the lowest beads iffitsie
three runners of the abacus in Figlle 1.

Shi [15] has worked out further details about the relatigmdietween root system geometry and
mirroredZ-permutations.

5. CORE PARTITIONS

5.1. Definitions. A partition is a sequence; > X\ > --- > )\ > 0 of weakly decreasing integers.
Each partition has an associatdidgram in which we place\; unit boxes on the-th row of the diagram,
where the first row is drawn at the top of the diagram. fibek length of a box B in )\ is the sum of the
number of boxes lying to the right @ in the same row and the number of boxes lying beléwn the
same column, including3 itself. Themain diagonal of a partition diagram is the set of all boxes with
position coordinatesi, i) € N2; for non-zero integerg, the j-th diagonal of a partition diagram is the
set of all boxes with position coordinatési + j) € N2. We use the notatiop||q to denote the integer
in{0,1,...,q— 1} that is equal tp modgq.

Definition 5.1. We say that a partitior\ is a (2n)-core if it is impossible to removen consecutive
boxes from the southeast boundary of the partition diagresaich a way that the result is still a partition
diagram. Equivalently is a(2n)-core if no box in\ has a hook length that is divisible Ry.. We say
that a partition) is symmetric if the length of thei-th row of A is equal to the length of thieth column

of A, for all i. We say that a partition is evenif there are an even number of boxes on the main diagonal
of \.

Every abacus diagramdetermines a partition, as follows.
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Definition 5.2. Given an abacus, create a partitioi€ (a) whose southeast boundary is the lattice path
obtained by reading the entries of the abacus in reading ard&recording a north-step for each bead,
and recording an east-step for each gap.

If we suppose that there afe active beads i, thenC(a) can be equivalently described as the
partition whose-th row contains the same number of boxes as gaps that appieae the( M/ — i + 1)st
active bead in reading order. In this way each box in the fgartcorresponds to a unique bead-gap pair
from the abacus in which the gap occurs before the active ine@ading order.

For an active beablin an abacus, we define thesymmetric gapg(b) to be the gap in positiodN —b
that exists by Lemmia_3.4. Then, for> N the bead-gap paip, g(b)) in a corresponds to the box on
the main diagonal on the row 6fa) corresponding to.

Example 5.3. For the minimal length coset representativec 53/03 whose base window is
[-11,-9,—1,8,16, 18], the partitionA = C(w) = (10,9,6,5,5,3,2,2,2,1) is given in Figurd 2. To
find this partition from the abacus diagram in Figlle 1, felithe abacus in reading order, recording a
horizontal step for every gap (starting with the gap in posit-4) and a vertical step for every bead
(ending with the bead in positiol).

23|

RPlO|lFR[IN] W
Ol RN WIN
w

WIN|RP|O|IFRN

POl RP[N]W|IN| PO P

|(JJI\)I—‘OHI\)OJN}—\O

FIGURE 2. The6-core partition\ = C(w) = (10,9,6,5,5, 3,2,2,2,1) for the minimal
length coset representative= [—11, -9, —1, 8,16, 18] € C3/C5. The numbers inside
the boxes are the residues, described below.

Proposition 5.4. The mapC : {abac} — {partitions} is a bijection from and onto the sets shown in
Table[4 on PagE 12.

Proof. A balanced flush abacusdetermines a partitiofi(a) by Definition[5.2. The fact that is flush by
construction implies that(a) is a(2n)-core. By Lemm& 314, the sequence of gaps and beads is idverte
when reflected about positiaN, soC(a) is symmetric.

We can define an inverse map. Starting frorf2a)-core partition), encode its southeast boundary
lattice path on the abacus by recording each north-step eachdnd each east-step as a gap, placing the
midpoint of the lattice path from to lie between entrie®’ — 1 andN + 1 on the abacus. The resulting
abacus will be flush becauseis a (2n)-core. The resulting abacus will be balanced because whenev
position: is the lowest bead on runnéi||N), then by symmetr2N — i is the highest gap on runner
(N —i||N)soN —iis the lowest bead on runnéN — i||N).

Moreover, we claim that the maprestricts to a bijection between even abaci and even cotéiqas.

In the correspondence between abaci and partitions, timg ahicorresponds to the midpoint of the
boundary lattice path. In particular, this entry lies at¢bener of a box on the main diagonal. Therefore,
the number of gaps precediny in the reading order o# is equal to the number of horizontal steps
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lying below the main diagonal of = C(a), which is exactly the number of boxes contained on the main
diagonal of\. O

5.2. Residues for the action ofiV’. If we translate the action of the Coxeter generators on dbemigh
the bijectionC, we obtain an action dfi” on the symmetri¢2n)-core partitions.

To describe this action, we introduce the notion eésiduefor a box in the diagram of a symmetric
(2n)-core partition. The idea that motivates the following diifins is thats; should act on a symmetric
(2n) -core\ by adding or removmg all boxes with residiidn contrast with the situation in typeés and
C, it will turn out that for typesB andD the residue of a box i may depend o and not merely on
the coordinates of the box.

To begin, we orienN? so that(i, j) corresponds to row and columnj of a partition diagram, and
define thefixed residueof a position inN? to be

res(i, ) — {(j —)l|(2n) it0<(j—d)@2n) <n
T 2 (U - )l@n) < (G- 0)(2n) <20

Then, the fixed residues are given by extending the pattesirited below.

0 1 2 coon—1 n n—-1 - 2 1 0 1 2
1 0 1 2 coon—1 n n-—-1 - 2 1 0 1
2 1 0 1 2 con—1 n n-—-1 - 2 1 0
2 1 0 1 2 coonm—=1 n n—-1 - 2 1

n—1 2 1 0 1 2 coon—=1 n n—-1 - 2
non-1 2 1 0 1 2 oon—=1 n n—-1 -
n—-1 n n-1 : 2 1 0 1 2 coon—=1 n n-1

:on—1 n n-1 : 2 1 0 1 2 coon—=1 n

We define arescalatorto be a connected component of the entfieg) in N? satisfying
G =)l2n) e{n—1,n,n+1}.

If an escalator lies above the main diagohat j, then we say it is anpper escalator, otherwise, it is
called alower escalator Similarly, we define alescalatorto be a connected component of the entries
(i,7) in N? satisfying

(G —D)l2n) € {-1,0,1}.
If a descalator lies above the main diagohal j, then we say it is anpper descalator, if a descalator
lies below the main diagonal= j, it is called alower descalator There is onanain descalatorthat
includes the main diagonal= j which is neither upper nor lower.

Let A be a symmetri¢2n)-core partition. We define thesidues of the boxes in an upper escalator
lying on row ¢ depending on the number of boxes in théh row of X that intersect the escalator, as
shown in FiguréB(a).

Here, the outlined boxes represent entries that belongetooth of A, while the shaded cells represent
entries in an upper escalator. The schematic in Figure B@ys all ways in which these two types of
entries can overlap, and we have written the residue assigisnthat we wish to assign for each entry.

Note that in the first case, whepeis adjacent to but does not intersect the upper escalatovjeme
the first box of the escalator as being simultaneoysly- 1)-addable and:-addable. In this case, the
rightmost cell of the upper escalator has undetermineduesiand is neither addable nor removable. A
similar situation occurs when a row afends with three boxes in the upper escalator. In all othezs;as
the entries of an upper escalator have undefined residue.
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FIGURE 3. Residue assignments for upper escalators and desealator

We similarly define theesidues of the boxes in a lower escalatdying on column; depending on
the number of boxes in theth column of) that intersect the escalator. The precise assignment Bysim
the transpose of the schematic in Figure 3(a).

Moreover, we similarly define thesidues of the boxes in an upper descalatasn row: depending
on the number of boxes in theth row of \ that intersect the descalator, as shown in Figlire 3(b). The
transpose of this schematic gives the assignmerdsiflues of the boxes in a lower descalator

Finally, the residues of the descalator containing the mi@igonal are fixed, and we define tlesidue
of an entry (i, j) lying on the main descalatorto be

0 if(j—i)=0
mres(i,j) =41 if (j—4)e{l,-1}and(j+i) =1 mod4
0 if(j—i)e{l,~1}and(j+i)=3 mod4

where the upper left most box has coordindteg) = (1, 1).

Example 5.5. In Figure(4, we consider residues using all of the featurssudised above. It will turn out
that this corresponds to type; /D5 and that the assignment of residues in each of the other tgess
a subset of these features as described in the fourth col@ifabte[4.

Here, the unshaded entries of Figulre 4 are fixed residues bivees(i, j) for n = 5; the gray shaded
entries represent an upper and lower escalator, and thelhfwked entries represent an upper and lower
descalator. The descalator containing the main diagorafiked residues given bwres(i, j). The
precise residues of the boxes in the upper/lower escald¢salators for a particular partition depend
on how the partition intersects the shaded regions.

Dgfinition~5.6. Suppose\ isNa symmetrig2n)-core partition representing an element of tﬁ@/Wn €
{Cy,/Cy, Bn/Bn, Bn/ Dy, D,/ D, }, and embed the digram of in N? as above. Then we assign the
residueof (i, j) € N? as described above, using the features listed in the fooftmm of Table 4.

Definition 5.7. Given a symmetri¢2n)-core partition\ with residues assigned, we say that two boxes
from N? are i-connectedwhenever they share an edge and have the same residife refer to the
i-connected components of boxes frdf asi-components

We say that ari-componentC is addableif adding the boxes of’ to the diagram of\ results in a
partition, and thaf’ is removableif removing the boxes of’ from the diagram oA results in a partition.

We are now in a position to state the action1of on symmetric(2n)-core partitions in terms of
residues.
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FIGURE 4. The fixed residues ifs /D5

Type | Abaci Partitions Features for residue assignment

C/C | balanced flush abaci symmetric(2n)-cores fixed residues only

B/B| even balanced flush abaci| even symmetri¢2n)-cores | fixed residues with descalators

B/D| balanced flush abaci symmetric(2n)-cores fixed residues with escalators

D/D| even balanced flush abaci| even symmetri¢2n)-cores | fixed residues with escalatofs
and descalators

TABLE 4. Core partitions fofV /W

Theorem 5.8. Letw € W/W and suppose\ = C(w). If s; is an ascent forw thens; acts on\ by
adding all addablei-components ta. If s; is a descent fow thens; acts by removing all removable
i-components from. If s; is neither an ascent nor a descent forthens; does not change.

The proof of this result is postponed to Secfidn 9.

Example 5.9.Consider the minimal length coset representative [—12, -7, —5,2,3,8,9,16, 18,23] €
155/D5. The corresponding core partition= C(w) = (11,8,7,4,3,3,3,2,1,1, 1) is pictured in Fig-
ure[B. The known residues are placed in their correspondings

If we were to apply the generatey to A, this would remove four boxes—the two boxes in the upper
right corner and the two boxes in the lower left corner. The two the main diagonal with residukeis
not removed because we cannot remove only part of its comth@cmponent of residuEboxes.

From ), we determine that, ands, are descents (as they would remove boxesgndss are ascents
(as they would add boxes), and and s; are neither ascents nor descents (as they would leave the
diagram unchanged).
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FIGURE 5. The core partitiol = C(w) = (11,8,7,4,3,3,3,2,1,1,1) corresponding
to the minimal length coset representative= [—12,—7,—5,2,3,8,9,16,18,23] €
D5/ Ds. The numbers indicate the residues of the boxes.

5.3. Bruhat order on symmetric (2n)-cores. In this section, we use an argument of Lascoux [11] to
show that Bruhat order on the minimal length coset reprasieas W/W corresponds to a modified
containment order on the corresponding core partitionrdiag. This affirmatively answers a question
of Billey and Mitchell [2, Remark 12].

Definition 5.10. Let A\ andu be two symmetrig2n)-cores. Suppose that every boxothat does not
lie on an escalator or descalator is also a box,aind that:
e Whenever the-th row of i intersects an upper escalator, upper descalator or thedesdalator
in 1 box, then the-th row of X intersects the given region inor 3 boxes.
e Whenever thé-th row of i, intersects an upper escalator or upper descalator or thedeaca-
lator in 2 boxes, then thé-th row of \ intersects the given region ihor 3 boxes.
e Whenever thé-th row of ; intersects an upper escalator or upper descalator or thedeaca-
lator in 3 boxes, then thé-th row of ) intersects the given region tboxes.

In this situation, we say that contains 1, denoted\ &> (.

Theorem 5.11.Letw, z € W/W. Thenw > z in Bruhat order if and only i’(w) > C(z).

Proof. We proceed by induction on the number of boxeswinWhen the Coxeter length af is 1, then
T = w, T = e, Or x iS not related tav in Bruhat order. In each case, the result is clear.

Let s; be a Coxeter generator such thaty < w in W/W. If x < w then the Lifting Lemmal][8,
Proposition 2.2.7] implies that;w > min(z, s;x) in w. Every reduced expression for a nontrivial
element oflV’ /W ends ins, so if s;z <  thens;z € W /W. Therefore s;w > min(z, s;z) in W /W.

Conversely, ifw > s;w > min(z, s;x) in W/W then we find thatv > z; this follows directly when
x < s;x or x = s;x, and follows by another application of the Lifting Lemma whgr < x.
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We therefore have the equivalence< w if and only if min(z, s;z) < s;w. Hence, we reduce to
considering the pait’ = s;w, ' = min(z, s;z) in W/W, and we need to show théfw’) > C(2') if
and only ifC(w) > C(z) to complete the proof by induction.

Suppos& (w)>C(x). Then we pass t6(s;w) by removing boxes with residudrom the end of their
rows and columns. By Definition 5.110, every such box frétw) is either removable i€ (z) or else
absent fronC(z). HenceC(w’) > C('). Similarly, it follows from Definition{5.10 that i€ (w’) > C(2')
then every addable box with residuén C(2’) is either addable i€(w’) or already present i@ (w’).
HenceC(w) > C(z). O

6. REDUCED EXPRESSIONS FROM CORES

6.1. The upper diagram. Let A = C(w). We now define a recursive procedure to obtain a canonical
reduced expression far from A. Recall that the first diagonal is the diagonal immediatelyhe right
of the main diagonal.

Definition 6.1. Define thereference diagonalto be

the main diagonal  in type§/C andB/D
the first diagonal  intype®/B andD/D

Given a core\ = A()) we define theentral peeling procedurerecursively as follows. At step we
consider\(”) and setd(” to be the number of boxes on the reference diagonalif SupposeB; is the
box at the end of thd®-th row of A(*) andr; is the residue of this box. In the case whBpis both
n-removable andn — 1)-removable, we set; = n. Apply generatoss,, to A() to find \(+1),

We defineR () to be the product of generatoss, s, - - - sy,

We also define thepper diagram, denotedU,, to be the union of the boxes; encountered in the
central peeling procedure respecting the following coodst: In E/D andf)/D, the application o&”
removes two boxes from th&?)-th row and we record i/, the boxnot on then-th diagonal; In§/B
and D/ D, the application o2 removes two boxes from thé&")-th row and we record it/ the box
noton the main o2n-th diagonal.

Proposition 6.2. We have thaR ()\) is a reduced expression far and the number of boxes i, equals
the Coxeter length ofy(\).

Proof. At each step, the central peeling procedure records a deszémis follows from Proposition 5.8.
O

We now present two examples of the central peeling procedneeinCs /C and another irDy /D,.

Example 6.3. The steps of the central peeling procedure applied to C([—11,—-9,—1,8,16,18]) €

Cs /Cs are presented in Figuré 6. The collection of gray boxestatiuring the central peeling procedure
is Uy; FigurelT show$/, superimposed ovex. We can read off the canonical reduced expres&oh)
starting in the center ok and working our way up, reading the gray boxes from right fo M/e have
R()\) = 5051505352515052535251505253525150-

Example 6.4. Let w = [-15,—11,-10,4,5,19,20,24] € 154/D4. The steps of the central peeling
procedure applied t&a = C(w) are presented in Figufé 8; notice that no tallied boxes arf®@main
diagonal or the fourth diagonal. These gray boxes mak&,ypvhich in turn is superimposed ovgrin
Figure@. The canonical reduced expressioﬁ(s\) = 50545251545352505453525154535250-
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FIGURE 6. The application of the central peeling procedure desdrib Definition 6.1
on the core partitiolh = C(w) for w = [—11,—-9,—1, 8,16, 18] € C3/Cs. The shaded
boxes are the boxeB; tallied by the algorithm; they make up the upper diagi@m
shown in Figurél7.

0123\

RPlO| RPN w
Ol | N|wlN
w

W N RPIO|lFL]DN

RPIOIRPIN W N RFPIO|F

‘OJI\)I—‘OI—‘I\)(AJI\)I—‘O

FIGURE 7. The core partition\ = C(w) for w = [-11,-9,—1,8,16,18] € C3/Cs,

with its upper diagrant/, superimposed. Reading the shaded boxes from the bot-
tom to the top from right to left gives the canonical reducegressionR(\) =
50515058352515052535251505253525150-
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FIGURE 8. The application of the central peeling procedure desdrib Definition 6.1
on the core partition\ = C(w) for w = [~15,—11,—10,4,5,19,20,24] € D4/D.
The shaded boxes are the boxgstallied by the algorithm; they make up the upper
diagramU,, shown in Figuréo.
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FIGURE 9. The core partitiol\ = C(w) for w = [—15,—11,-10,4,5,19,20,24] €
§4/D4, with its upper diagrani/, shaded. I, was calculated in Figufé 8.) Reading the
shaded boxes from the bottom to the top from right to left githee canonical reduced
expressiorR(A) = 50545251545352505453525154535250-
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6.2. The bounded diagram. We now describe a nonrecursive method to determine the ujigpgram
of any core). This method generalizes a bijection of Lapointe and Molﬂ;dn[ﬁn/An.

We say that a box in having hook length< 2n is skew. The skew boxes on any particular row form
a contiguous segment lying at the end of the row. Considecaliection of boxes, C ) defined row
by row as the segment that begins at the box lying on the magodal and then extends to the right for
the same number of boxes as the number of skew boxes in thdrrcﬁv/B andf)/D, remove fromv
all boxes along the main diagonal. E/D andﬁ/D, remove fromv all boxes along the-th diagonal.
We call this collection of boxes thebounded diagramof A, denotecﬁA.

Theorem 6.5. Fix a symmetrig(2n)-core partition A. Then, the bounded diagrai% is equal to the
upper diagraml/y.

The proof of this theorem is postponed to Section 9.2.

Example 6.6. For the minimal length coset representative= [—11, —9, —1,8,16, 18] € 53/03 and

its corresponding core partition= C(w), a visualization of the construction bf, is given in Figure_10.
This agrees witli/, as found in Figuré]7.

‘ 1] ] "k |

[ N

[ N
FIGURE 10. Forw = [-11,-9,—1,8,16,18] € C3/Cs, we left-justify the skew boxes
to the boxes on the main diagonal to find the bounded diagram.

1

7. BOUNDED PARTITIONS

If we left-adjust the boxes of the upper diagram along with tesidues they contain, we obtain a
structure that has appeared in other contexts includingnyavalls in crystal bases of quantum groups
[16], Eriksson and Eriksson’s partitions in [9], the affinartitions of Billey and Mitchell [[2], and the
k-bounded partitions of Lapointe and Morse [1]. Lam, Samgliand Shimozona [17] develop combi-
natorics analogous to thiebounded partitions for typ€’, and [18] contains similar constructions for
typesé andD. In this section, we explain how these objects are relatdldet@bacus diagrams and core
partitions we have introduced.

Definition 7.1. Given a core\, apply the central peeling procedure to find the upper diadra. We
define thebounded partition B(\) to be the partitiond whosei-th part equals the number of boxes in
row i of Uy. B

In B/D (and D/ D), if there exists a part of size (n — 1, respectively), and the last pait of this
size has rightmost box with residue— 1, then adorns, with a star decoration.

By construction, the number of boxes in a bounded partidhé Coxeter length of the corresponding

element inW/W. Besides being historical, the motivation for the name ‘fimed partition” is that part
sizes inB(w) are bounded in the different types By, 2n — 1, or 2n — 2, as shown in Tablel5.
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Type | Bounded partition structure
C'/C | parts with size< 2n, where parts of size, ..., n may occur at most once.
B/B | parts with size< 2n — 1, where parts of sizé, ..., n — 1 may occur at most once.

B/D | parts with size< 2n — 1, where parts of size, ..., n — 1 may occur at most once, and ope
of the parts of sizex may be starred.

D/D| parts with size< 2n — 2, where parts of size, ..., n — 2 may occur at most once, and ope
of the parts of sizes — 1 may be starred.

TABLE 5. Bounded partitions cﬁ//W

Remark7.2 The need for a decoration iB/D and D/D arises because it is possible that two core
partitions yield the same bounded partition. For exampbasitler elements); = sps1 -+ - Sp_28n_1
andwy = sgs1 - - - Sp—o8y Of E/D. They both have the same Coxeter length and correspond tmnaled
partition with one part of size; however, these elements are distinct and have differeati amd cores.
We would say thaBB(w;) = (n*) andB(w2) = (n). The reader should interpret the star as arising from
a lengthn sequence of generators (length- 1 in type f)/D) that ends withs,,_; instead ofs,,.

Recall that Definition 5J2 gives a correspondence betwees of A and active beads inl(\). To-
gether with Theorer_61.5, this presents a method to deterthimmdounded partition from an abacus
diagram.

Lemma 7.3. For a rowr of A corresponding to an active bead> N in A(\), the number of skew boxes
in row r on or above the main diagonal equals the number of gaps batvaad max(b — N, g(b)),
inclusive.

Proof. By definition[5.2, the skew boxes on a row corresponding tactimeabead are the gaps between
b — N andb. Also, the diagonal box on this row corresponds to the symmgapg(b), and the result
follows. 0

Defineoffsetszq andx,, corresponding to the occurrence of generatgtsainds? as follows. These
offsets record whether a fork occurs on the left or right sioiethe Coxeter graph, respectively.

L0 in typesC/C andB/D Lo in typesC /C andB/B
7 1-1 intypesB/BandD/D. "7 1-1 intypesB/D andD/D.

Proposition 7.4. Given an abacus diagram, the bounded partitio5(a) is found by creating one part
for each bead > N in descending order, as follows:
e For each bead > N + n, create a part of size equal to the number of gaps betweasdb — N
plusl 4+ zg + .
e Foreach beadV +1 < b < N + n, create a part of size equal to— N plusxg. Ifb =N +n
in typesB/D and D/ D, then star the resulting part.

Proof. Whenb > N + n, the number of skew boxes equals the number of gaps betvaedb — NV
by Lemma7.B. We add one for the main diagonal, and apply tsffiee the main diagonal and-th
diagonal. WhenV +1 < b < N +n, the number of boxes in rowequals the number of gaps betweéen
andg(b) by Lemmd7.B, which equals— N by Lemmd 3.4. None of these parts enter:thia diagonal,
so we only apply offset,. Starring conditions follow from Definition 7.1. O

We are now in a position to prove the main result of this sactio

Theorem 7.5. The maps is a bijection ofW/W onto the partitions described in Talilé 5.
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Type | Residue fillings
C/C | Fill all boxes in columnl < i < n + 1 with residue: — 1 and all boxes in column
n+ 2 < ¢ < 2n with residue2n + 1 — <.

B/B | Fill all boxes in columnsl and2n — 1 with residues) and1 alternating, starting at th
top with 0. Fill all boxes in column2 < ¢ < n with residuei and all boxes in column
n+1<1¢<2n—2with residue2n — «.

B/D| Fill all boxes in columnl < i < n — 1 with residuei — 1, all boxes in columm + 1 with
residuen, and all boxes in column + 2 < ¢ < 2n — 1 with residue2n — i. In the last
row of lengthn (if one exists), if the part is starred, fill the box in columrwith residue
n — 1; otherwise fill it with residuer. In other rows of length, place residues andn — 1
alternating up from there. Fill all other boxes in colummvith residuen — 1.

D/D| Fill all boxes in columnd and2n — 2 with residues) and1 alternating, starting witlo at
the top. Fill all boxes in columg < i < n — 2 with residuei, all boxes in columm with

residuen, and all boxes in column 4+ 1 < ¢ < 2n — 3 with residue2n — 7 — 1. In the last
row of lengthn — 1 (if one exists), if the part is starred, fill the box in column- 1 with

residuen — 1; otherwise fill it with residue:. In other rows of lengtm — 1, place residue
n andn — 1 alternating up from there. Fill all other boxes in column- 1 with residue
n — 1.

4]

U7

TABLE 6. Fillings of bounded partitions

Proof. We present the inverse map fbas described in Propositidn ¥.4. This inverse takes a balinde
partition 5 and gives an abacus= A(3). We write 5 = (f1, ..., 0k, Bk +1,---, Bk +k), Where each
part5; > n+ 1+ x9 + z, for 1 < ¢ < K (and unstarred if applicable), anmt] < n + x( for

K +1<i< K+ k(wheren + xq is starred in typeé/D anleJ/D).

For each parBx.; for 1 < i < k, place a bead in positioN + S ; — zo. In typesB/B andD /D,
if K + kis odd, place a bead in positiad + 1. After this, if positionN + j for 1 < j < nis a gap,
place a bead in positiofV — j.

We now insert beads into the abacus one at time for gartthrough 5, in this order. For each part,
we consider the possible positions for placing the next bede the positions in reading order after the
current lowest bead that have a bead one level above. Fopat sizen + j + z¢ + x5, We place a
bead in thej-th possible position. For a past for i < K, place a beadin the 5; — 5,11 + 1-th possible
position. By this construction, the number of gaps betweandb — N is exactlys; + 1.

Once we have finished placing beads as described, fill in kiamlgen + 1 as necessary to make the
abacus balanced and flush.

Observe that the abacus enforces the structural condigioaes in Tablé b. O

It is natural to fill the boxes of the bounded partitions whie residues present in the corresponding
boxes of the upper diagrams before left adjusting. As thesiglues are inherited from the residues in
the core partition, they follow a predictable pattern.

Proposition 7.6. Fix a bounded partitiord = B(w) and fill the boxes of with residues as described in
Table[6. The canonical reduced expressi®fw) is obtained by reading these residues frénright to
left in rows and from bottom to top.

Proof. This follows from Definitiol 7.1L and Theorem 6.5. O

E~xample 7.~7. The bounded partitios = (8,8,5,5,5,4,2) could be a member of any one §t5/B5,
Bs/Ds, or D5/ Ds. The different fillings given by Propositidn 7.6 are showrrigurel11. Since no part
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of 3 is starred, the last row of lengthin §5/D5 contains a residue d&finstead of at, and the residues

in this column are determined from there. Similarly, the m@wWength4 in 155/D5 contains a residue
of 5. To read the reduced expression (), read from right to left in rows from bottom to top; for

example inl~)5/D5 we would have

R(ﬁ) — 8525055535925155545352505554535925155545352505152535554535251505253555453525(.
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FIGURE 11. Example of the bounded partitigh= (§,8, 5,5,5,4, 2) and the residues
which populates when 3 represents an element &;/B5, Bs/Ds, and D5/ Ds, re-
spectively.

8. COXETER LENGTH FORMULAS

If we sum contributions to the Coxeter length from beads éndAme runners in Propositibn17.4, we
obtain the following formula for the Coxeter length of a nmiral length coset representative defined by
way of an abacus.

Corollary 8.1. Leta be the abacus corresponding to a minimal length coset reptesivew € W/W.
For 1 < ¢ < n, choose the lowest beal(i) occurring in either runneri or N — 4, and the bead
n+1 < b(i) < N + n occurring in B(4)’s runner. Letg; be the number of gaps betweBii) andb(i)
ina. Then

lw)= " gi+(1+z+a,)(#0fbeads> N+n)+ > (b—N+a).
lsisn N+1<b<N-+n

Example 8.2. In our example ofw = [—11,—9,—1,8,16,18] € C5/Cs with abacusa = A(w) in
Figure[1, we create a part of the bounded partifit{w) for each bead im greater thanV = 7. The
beads in question ares, 16, 11, 9, and8. The first three beads are greater tlfan 3, so we count the
number of gaps betweénandb — N and add one, giving, 5, and4. The last two beads are betwegn
and10, so we takeéh — N, giving 2 and1. This agrees with the previously fout{w) = (5,5,4,2,1).
In the terminology of Corollari 8113, = b; = 8, By = 16, by = 9, B3 = 18, andbs = 4. We then
calculateg; = 0, g2 = 4, g3 = 7 and see that(w) = 11 + (1)(3) + 3 = 17, agreeing with the number
of generators ik (w) found in Examplé& 6]3.

Given a core partition\, Theorem 6.6 gives a simple method to find the correspondmgded
partition, from which its Coxeter length can be read disectl is possible to determine the Coxeter
length of the corresponding minimal length coset repredmatin another way, analogous to the method
givenin typeﬁn/An in Proposition 3.2.8 in [10] by translating Propositlon] étb the language of core
partitions.

If we fill in the boxes of a core along the diagonals with the bens1 through2n instead of the
residues, the number at the end of each row corresponds tarther number of the bead in the abacus
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which corresponds to that row. This filling allows us to vismwhich rows of\ correspond to beads
in the same runner. Involved in the statement of the proposkielow is the determination of the rows
R(7) andr(7) of A that correspond to the beaégi) andb (7).

Proposition 8.3. Let\ = (\q,..., Ax) be a symmetri¢2n)-core partition. If all parts of\ are less than
or equal ton, then
(V) = > max(0, X — i+ 1+ xo).
1<i<k

Otherwise, defing?(i) to be the longest row ok to have runner numbei or N — i labeling its
rightmost box. Then follow the boundary bextended: steps out in each direction from its center, a
path which will involven vertical steps andw horizontal steps. Define(i) to be the unique row of
ending with one of the vertical steps and whose rightmost box is labeled by the sd@moee ofi or
N — i as for R(i). Defined to be the number of rows of whose box on the main diagonal has hook
length greater thar2n. Then,

W) = Arey = Mr@y) + U+ azo+a)d+ D max(0, A — i+ 1+ o).
=1 d+1<i<k

Proof. In a core of the first type, all boxes are skew. The sum couetatimber of boxes in the bounded
partition, because the number of boxes between the diagodal; inclusive isA; — i + 1.

In a core of the second type, there exists a box with hook length at leastn. Hence the boundary
of A extends more than steps out in each direction from its center, aitd is well defined since in the
abacus: = A(\), beadb(i) exists betweem + 1 and N + n on runnerB(:)|| N, the runner number of
row R(i). The first two terms in the formula translate directly fronopusition[8.1 and correspond to
contributions from beads > N +n. Beadsh < N + n correspond to rows of starting with rowd + 1,
again the number of boxes between the diagonalXamaclusive is\; — i + 1. O

Example 8.4. Consider the coré = (12,12,8,8,7,5,5,4,2,2,2,2) € Eg/Dg, pictured in Figuré_ 12
with runner numbers.

(20 el Wl [\

Nlw| || O
wWlhjO|O|

o[ NWw|»~lo

Wlh|lO|O| R[N W[ D>

NlwW|_|O|O| ]| N|W

NlwW|_|lO|O|R|IN|W|~O|O| -
Wlh|O|O|R[(N|W| OO N

FIGURE 12. The core partition = (12,12,8,8,7,5,5,4,2,2,2,2) € Bs/Ds. The
numbers in the boxes are the runner numbers.

This partition has parts of size larger tharso we apply the second half of Proposition 8.3. The runners
corresponding té = 1, 2, and3 are have runner numbegs 5, and3. Consequently)\R(l) =\ = 12,
/\R(Q) = X = 12, )\R(g) =)\ =7, /\r(l) = X¢ = 5, /\r(g) = \7 =5, /\T(g) =)X5 =17, andd = 4. We
conclude that(W(X)) = (12 —=5)+ (12=5)+ (7T—=7)+ (1 +0—1) -4+ (3) = 17.
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Another formula for Coxeter length can be obtained summingtributions from the longest rows
in C(w) ending with a given runner number, and then subtracting 4d¢oraccount for boxes that are
counted twice in the peeling process. This gives a secondgueof Proposition 3.2.8 in [10].

Definition 8.5. Let A be a symmetri¢2n)-core. LetD be the lowest box on the main diagonalofFor

1 <i < n,let R(i) be index of the longest ToWR(;) of A having rightmost box from runnéror N — 4.
The rim of A consists of the boxes from that have no box lying directly to the southeast. We

define therim walk W (i) from the rightmost box3 of Ap(;) to be the collection of boxes encountered

when walking along the rim ok from B towardsD, ending at the last box encountered from runner

min(i, N — ¢) prior to D. We leth(i) denote théneight of 1 (i), defined to be the number of rows bf

that intersectV (i) and end in a box having a runner number that is different fregrlast box of\ p;) .

Theorem 8.6. Let A be a symmetri¢2n)-core. The Coxeter length V() is
LOVN) = > (Ar@) — R() — h(i) + 1) + zodo + Tndp.

1<i<n

whered; is the number of boxes on thh diagonal of).

Proof. By Theoreni 6.6, the Coxeter length is equal to the number xéHo the bounded diagrafﬁA
of \. There is one row i/, for each bead ind(\) succeedingV in reading order, and the number of
boxes on each row iy, is the number of skew boxes in the row, together with entries fthe0-th and
n-th diagonals, depending on the Coxeter type.

We claim that the number of skew boxes from all rows endindnwitox from runnei is equal to
Ar() — R(i) + 1 — h(i). Depending on the Coxeter type, we will also subtract boxesesponding to

xody andx,d,, in the last step of the construction Bj.

To see why the claim is true, consider the last bieadreading order lying on runnér This bead has
Ar@) — R(i) + 1 gaps lying weakly betweeg(b) andb. Each gap lying betweeN andb corresponds
to a skew box for precisely one bead lying on runintr the right of V in reading order.

SinceN + i is the earliest bead on runngein reading order that corresponds to a row lying above the
main diagonal, we must therefore subtract the gaps prioositipn max((N + ¢) — N,g(N + 1)) =
max(i, N — i) that are not of the formg(b') for any bead’ on runneri.

By Lemmal3.4, such gaps correspond to beads lying betwege(i, N — i) andb that do not lie on
runneri. This quantity is equal to the height of our rim walk begirat the last box of rowR (i), which
corresponds td3.

Including contributions for each runnéyields the sum given in the formula. d

Example 8.7. Consider the cora = (12,12,8,8,7,5,5,4,2,2,2,2) € Bs/Ds, pictured in Figuré 12
with runner numbers.

We haveR; = 1, Ry, = 2 and Rz = 5. The rim walk from the last boxX3 of \; consists of alll2
boxes on the rim lying betweel and D, and there ar8 rows (namely2, 4, and5) that do not end in
runner6. Hencei(1) = 3. The rim walk from the last bo®B’ of A\, consists of the 0 boxes on the rim
lying betweenB’ and the box immediately right dD. There are2 rows (namely3 and5) that do not
end in runneb, soh(2) = 2. The rim walk from the last boX3” of A5 consists of the single bok”
because there are no other boxes from rusriging on the rim betwee” and D. Hence i (3) = 0.

Thus, we computé(W(\)) as

(((Mgay — R(Q) +1) = h(1)) + ((Ag@y — B(2) +1) — ~(2)) + ((Ag@) — R(3) + 1) — h(3))) — dy
= ((12-3)+ (11 -2)+(3—0)) —4 = 17.
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9. PROOFS

9.1. Residues for core partitions. We now turn to the proof of Theoreim 5.8.

Proof. [of Theoreni518] Givenw € W, /W, suppose that = A(w) andA = C(w). Let the residues
be assigned to entries bif near the southeast boundary of the diagrathas in Definitiori5.5. Consider
the application of a generatey.

By Lemmal3.4, the midpoint of the boundary lattice path\afccurs at entryV in the abacus, and
this corresponds to the outermost corner of the lowest bak®main diagonal ir\. In every type, the
boxes on the main diagonal are assigned residue 0.

Because the assignment of fixed residues is constant aletiguest-southeast diagonals, the assign-
ment of fixed residue to entry, j) is the same as the assignment of fixed residue to €ntryu, j + v)
whenevemw, v > 0 andu+ v = 2n. From this it follows that every bead on a given runner isgresil the
same fixed residue. Moreover, we find that all of the beadsrinety correspond to boxes with residue

j—1 ifl<j<nd+l
2n—j+1 ifn+2<j<2n.

We observe that the connected components of boxes with fsidiue are always single boxes. A box
with fixed residue is removable if and only if it lies at the end of its row and aoly which therefore
occurs if and only if it corresponds to an active bead on ruanel or 2n — i + 1 with a gap immediately
preceding it in the reading order of the abacus. Similarlgpa with fixed residue is addable if and
only if it corresponds to a gap on runniet 1 or 2n — ¢ 4+ 1 with an active bead immediately preceding
it in the reading order of the abacus. The actiorsoih type Cn swaps runners and: + 1 as well as
2n — i and2n — i + 1 which therefore interchanges all of th@ddable and-removable boxes.

Since the abacus is flush, exchanging runaevih i + 1 and2n — i with 2n — 7 + 1 (mod N) either
adds some set of boxes with residue the diagram of\ in the case thad; is an ascent, or else removes
a set of boxes with residuen the case that; is a descent. 1§; is neither an ascent nor a descent then
the levels of the lowest beads in the relevant columns arsathee, so the abacus and corresponding core
remain unchanged.

This proves the result in the case wher{0 < i < n) is a generator of typé. The generators,, 1
and s apply to entries in an escalator, which we consider belowe génerators; ands{’ apply to
entries in an descalator, and the argument is entirely &irad we omit it.

To verify the result fors,,_; ands?, we consider the action of these generators on all posdilalei.a
It suffices to consider the action on a single row of the ababouce this translates into a connected
segment of the lattice path boundary of the core partitiosingthe results for typé~7 generators that
we have already shown above, we observe that the latticegpatys begins on the boundary of a box
with residuen — 2 by induction.

Case: The abacus row contains a single bead among the posiiors1, n,n + 1,n + 2}.

Then, the abaci satisfy the following commutative diagram.

D
Sn
@ n n+1l n+4+2 n—1 n @n+2

\Lsn71 \Lsnfl

sD
n
nfl@n+l n -+ 2 n—1 n n+l@

We translate these entries of the abaci into a segment ofdaedary lattice path. Observe that
Lemmal3.b implies that we are above the main diagonal, so sigrasesidues to boxes in the upper
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escalator horizontally. Then, it is straightforward toifyethat the action ofs; does add (or remove) all
addable (removable, respectively) components with residior i € {n — 1,n}, as shown below.

D
n—2 (”;1) n Sn n—2 n n n—1

5

\l/sn71 \l/snfl

n—2| n-1 n n n n—2 W (n;])

Case: The abacus row contains a single gap among the posifiens1,n,n + 1,n + 2}.
Then, the abaci satisfy the following commutative diagram.

OO = O OO

\Lsnf 1 \Lsnfl

SIOICEETIOICIT

We translate these entries of the abaci into a segment ofdaedary lattice path. Observe that
Lemmal3.b implies that we are below the main diagonal, so wigasesidues to boxes in the lower
escalator vertically. Then, it is straightforward to vgrihat the action ok; does add (or remove) all
addable (removable, respectively) components with residior i € {n — 1,n}, as shown below.

|
SU

n

Case: The abacus row contains two beads in one of the configurasiomsn below.

sp
OO B OO

We translate these entries of the abaci into a segment obtledary lattice path.
If we are above the main diagonal, then we assign residudgetbdxes in the upper escalator hori-
zontally, as shown below.
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If we are below the main diagonal, then we assign residudsetddxes in the lower escalator verti-
cally, as shown below.

n—2 n n n—2 (n;l) n

In each subcase, it is straightforward to verify that théoactf s; does add (or remove) all addable
(removable, respectively) components with residder i € {n — 1,n}.
Case: The abacus row contains two beads in one of the configurasioosn below.

Sn—1
O @ P DO

We translate these entries of the abaci into a segment obtiredary lattice path.
If we are above the main diagonal, then we assign residudsetbdxes in the upper escalator hori-
zontally, as shown below.

n—2 (”;U n n—2 | n-1 n n

If we are below the main diagonal, then we assign residudsetddxes in the lower escalator verti-
cally, as shown below.

n—2Q1n-1 n n—2 (";1) n

In each subcase, it is straightforward to verify that théoacof s; does add (or remove) all addable
(removable, respectively) components with residder i € {n — 1,n}.

Case: The abacus positiong: — 1,n,n + 1,n + 2} are all beads or all gaps.

In this case, both,,_; ands? fix the boundary lattice path segment. It is straightforwardee that
the corresponding core partitions have no addable nor rebieirboxes fori € {n — 1,n}.

Observe that Lemnia 3.5 prohibits abaci in either of the candiipns shown below.

O @ OO

This exhausts the cases. O

9.2. The upper partition. We now turn to the proof of Theorelm 6.5.

Proof. [of Theoren 615] Fix a core partition\ and its associated abacus= A(\). Recall that a box
in A having hook length< 2n is calledskew. Define the bounded diagraﬁ‘;x as in Section 6]2. We say
that a box of lying in the bounded diagrarﬁA is bounded We will prove that the bounded boxes are
the boxes peeled in the central peeling procedure.

To prove Theorern 615, we work by induction on Coxeter lengivestigating the application of one
step of the central peeling process. For the remainder ®ptioiof, letB be the rightmost box in the row
r of A containing the lowest box on the reference diagohék its corresponding active bead.t{)),
and let; be the residue of3. When we apply; to removeB, we claim that:
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(1) B is bounded.
(2) We remove no other bounded box.
(3) If a box B’ was bounded in\, thenB’ is also bounded ig;(\).

Proving these claims complete the proof of Thedrerh 6.5 secthey show that during the central peeling
procedure the bounded boxes offemain bounded boxes in intermediary steps and that exanty
bounded box ot/ is peeled in each step.

In terms of the abacus$,is essentially the first bead succeediNgn reading order. However, if we
are in a type that useg’ then there may be a bead in positidh+ 1 that cannot be moved to the left
because positioV + 2 is a gap. In this case,is the next bead in reading order affér+ 1. In all cases,
b < 2N + 1 by the Balance Lemnia 2.4.

We first prove (1) using the definition ¢2n)-core. When we are in a type that usgs thenr is the
row containing the lowest box on the main diagonal. All boxe®w r starting from the first diagonal to
B all have hook length less th&n, so they are all skew and consequently bounded as well dimguB.
When we are in a type that us€, thenr is the row containing the lowest box on the first diagonal. All
boxes in rowr starting from the first diagonal tB all have hook length less than or equatg equality
occurs only when has a box in th&n-th diagonal and row + 1 has a box on the main diagonal. The
skew boxes in- are therefore all boxes between the second Zanth diagonal; this implies that the
bounded boxes in are all boxes between the main afh — 1)-st diagonal, this last box being by
Definition[6.1.

To prove (2), consider some bd¥ that is removed when applying. We will show that there are
non-skew boxes in the row containid®j which imply thatB’ is not bounded. Definé to be the lowest
box on ther-th column. This is the reflection d® by the main diagonal and in the abacus this column
corresponds to the symmetric ga(b). Suppose that we apply generatpfor 1 < i < n—1ors; = s¢.
We note that bottB and B’ have residué and are in non-consecutive diagonals containing this uesid
Therefore the box that is at the same time abBvand to the left of3’ has hook length at leagh and
is therefore not skew.

When we apply the generateg, the boxB is on the main diagonal and the b@X is on thej-th
diagonal for; > 2n. Therefore the box that is at the same time abBvand to the left ofB’ has hook
length at leasen and is therefore not skew.

When we apply the generatsf’, we remove two boxes ifB”’s row; we prove the existence of the
two required gaps. In this casB,is on the first diagonal, with a box directly below, a box to lift, and
the boxB to the lower-left, all four of which are removed whef is applied. The two boxes to the left
of B’ that are aboveé3 and B both have hook length at leat.

When we apply the generatsf’, we also remove two boxes i’s row. If B’ is on thej-th diagonal
wherej > N +n — 1, then the box abov& and to the left of3” has hook length at lea8t:, as does its
right neighbor. The last case is th@t is in diagonaln + 1 while B is in diagonaln — 1. In this caseB
and B’ are in the same block of four boxes which are removed uponghlication ofs”. There aren
bounded boxes ii’’s row, not includingB’. This exhausts the cases.

To prove (3), we show that the number of skew boxes on eachfrovaboveB is equal to the number
of skew boxes on each row ef(\) aboveB. Left-justifying these skew boxes to the main diagonal then
gives the same bounded region.

We consider first generatoss wherel < i < n — 1 ands$. Let’ be a bead lying to the right &f
in reading order. 1’ < N + n, then all boxes between the main diagonal @tidare skew. No boxes
in this row are removed upon application gfbecause the residue 8 is different from the residue of
B. If ¥ > N + n, then the number of skew boxes is the number of gaps betWesrdt’ — N. If the
action ofs; fixes runnew’|| NV, then the number of gaps betweérandy’ — N does not change.



ABACUS MODELS FOR PARABOLIC QUOTIENTS OF AFFINE WEYL GROUPS 27

Otherwised’ is on runnem||N or runner(N — b+ 1)||N. If b’ is on runnem|| N, then sincé — 1 is
agap, thensoig — N — 1. If b’ is on runner N — b + 1)|| N, then we notice that becausés a bead
thenN — b is a gap, and consequently sdfis- N — 1. In both cases, if we restrict our attention to the
entries betweel’ andd’ — N, we see that in the application ef, we lose a gap in positiobl — 1 but
gain a gap in positiod’ — N + 1, so there is no net change.

In the case ofsoc, both®’ andb are on runnett, so becausé — 2 = 2n is a gap, so i$’ — N — 2, and
we see that in the application &, we lose a gap in positiobf — 2 but gain a gap in positiotl — N + 2.

If o’ is involved in a transposition unde{f, then there are two cases. Eitheis in position N + 2
or b is in position2/N + 1. In the former case, there is a bead in positiént 1, and there is a gaps in
positions2n — 1 and2n. Consequentlyy’ is in either runnei or 2, and there are gapg andg” to the
left of & on runner2n — 1 and2n, as well as on the level below. When we appfy, we therefore lose
the gaps in runnerdn — 1 and2n, but then gain them back in runnérand2. In the latter case, the only
beads lower thaiV are in runner, and there is a gap in positi@m. Consequently)’ is also in runner
1, and there are gaps in positiobs- 2 andd’ — N — 2. When we apply’, we lose the gap/ — 2 but
then gain back/ — N + 2.

Finally, if b’ is involved in a transposition undef’, thenb is in positionN +n + 1 or N 4+ n 4+ 2, and
there are gaps in position§ + n — 1 and N + n. Consequentlyy’ is in either runnen + 1 orn + 2,
and there are gapg andg” to the left oft’ on runners: andn — 1, as well as on the level below. When
we applys?, we therefore lose the gaps in runnerandn — 1, but then gain them back in positions
¢ — N +2andg” — N + 2. This completes the proof of (3). O

10. FUTURE WORK

There are various results ([19], [20], [21], 122], to namengorecent examples) involving typ&
objects that we expect have analogues in the other types.

Another family of combinatorial objects in bijection witﬁn/Cn is the lecture hall partitions of
Bousquet-Mélou and Eriksson [23]. It may be interestinge¢e whether some analogue of these parti-
tions exists in the other affine types.
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