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A q-QUEENS PROBLEM. II. THE SQUARE BOARD

August 8, 2014

SETH CHAIKEN, CHRISTOPHER R. H. HANUSA, AND THOMAS ZASLAVSKY

Abstract. We apply to the n× n chessboard the counting theory from Part I for nonat-
tacking placements of chess pieces with unbounded straight-line moves, such as the queen.
Part I showed that the number of ways to place q identical nonattacking pieces is given by a
quasipolynomial function of n of degree 2q, whose coefficients are (essentially) polynomials
in q that depend cyclically on n.

Here we study the periods of the quasipolynomial and its coefficients, which are bounded
by functions, not well understood, of the piece’s move directions, and we develop exact
formulas for the very highest coefficients. The coefficients of the three highest powers of
n do not vary with n. On the other hand, we present simple pieces for which the fourth
coefficient varies periodically. We develop detailed properties of counting quasipolynomials
that will be applied in sequels to partial queens, whose moves are subsets of those of the
queen, and the nightrider, whose moves are extended knight’s moves.

We conclude with the first, though strange, formula for the classical n-Queens Problem
and with several conjectures and open problems.
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1. Introduction

The well known n-Queens Problem asks for the number ways to place n nonattacking
queens on an n×n chessboard. No general formula is known; the answer has been computed
separately for each small value of n. In this article, the second of a series [2], we treat
a natural generalization, the q-Queens Problem, in which both the number of queens, q,
and the size of the board, n, vary independently. In Part I we developed a general theory
for arbitrary convex-polygonal boards with rational vertices and any chess piece P with
unbounded straight-line moves (known as a “rider”); this includes the queen, rook, and
bishop as well as fairy chess pieces such as the nightrider, whose moves are those of a knight
extended to any distance. The main result of Part I (Theorem I.4.1) is that the answer is a
quasipolynomial function of n, which means it is given by a cyclically repeating sequence of
polynomials, and the coefficients of powers of n are essentially polynomial functions of q; in
fact, we found a complicated general coefficient formula. We deduced this from the theory
of inside-out polytopes, which is an extension of Ehrhart’s theory of counting lattice points
in convex polytopes.

Here and in later parts we treat the square board. The self-similarity of its interior lattice
points permits us to find explicit formulas for the two highest coefficients and partial formulas
for the others, for arbitrary riders. Setting q = n we obtain the first known formula for the
n-Queens Problem.

In Parts III through V we specialize to specific pieces. Part III applies the theory of
Parts I and II to “partial queens”, which have a subset of the queen’s moves. We found
partial queens easier to work with than other pieces with equally many moves; we also think
they make good test cases for conjectures. The main examples of partial queens are the
bishop, queen, and rook, which we treat in detail along with the nightrider in Parts IV and
V.

Part I serves as a general introduction to the series. Its introduction gives a fuller de-
scription of the background of our research, including the valuable hints obtained from the
formulas collected and developed by Václav Kotěšovec (see [3]). We define the necessary ter-
minology and notation from Part I; we provide a dictionary of notation to assist the reader
(and authors).

Briefly (see Section 2 for further detail), the board consists of the integral points in the
dilate (n + 1)B◦ = (n + 1)(0, 1)2 of the open unit square. The associated polytope is
P = Bq = [0, 1]2q with interior P◦ = B◦q = (0, 1)2q. The inside-out polytope is ([0, 1]2q,AP)
where AP is an arrangement of hyperplanes determined by the moves of the piece P. Each
hyperplane is the kernel of an expression involving two pieces. An intersection subspace is
an intersection of a subset of AP; the lattice of all intersection subspaces (ordered by reverse
inclusion) is denoted by L (AP), or by L (A q

P ) when we wish to emphasize the value of q,
and µ denotes its Möbius function.

The moves of P are all integral multiples of vectors in a nonempty set M of non-zero, non-
parallel integral vectors mr = (cr, dr) ∈ R2 reduced to lowest terms (that is, cr and dr are
relatively prime). The counting function uP(q;n) is defined as the number of nonattacking
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configurations of q indistinguishable copies of P on the n × n board, and oP(q;n) is the
number of such configurations of q distinguishable copies. By Theorem I.4.1 uP(q;n) is a
quasipolynomial function of n, which we expand as

uP(q;n) = γ0(n)n
2q + γ1(n)n

2q−1 + γ2(n)n
2q−2 + · · ·+ γ2q(n)n

0.

By Ehrhart theory the leading coefficient is γ0(n) = 1/q! and the period of uP(q;n) is a
divisor of the denominator D([0, 1]2q,AP), defined as the least common denominator of all
coordinates of all vertices of ([0, 1]2q,AP). (The denominator of a polytope alone is defined
similarly.) By Theorem I.5.3 the number of unlabelled combinatorial types of nonattacking
configuration equals uP(q;−1).

A trivial observation is that uP(1;n) = n2 for any piece, and with one piece there is (of
course) one combinatorial type. Theorem 3.1 gives a complete solution for uP(2;n), the
counting function for two copies of an arbitrary rider piece. General formulas for uP(q;n)
when q ≥ 3 are difficult.

A computational approach to finding uP(q;n) explicitly for a particular piece is to evaluate
it at enough small values of n by counting the non-attacking configurations, bounding the
period p somehow (possibly by bounding the denominator D(P,AP)), and using that infor-
mation to interpolate the coefficients of the p constituent polynomials. To get a confirmed
answer, 2pq values of uP(q;n) must be computed. (See Section 8.2 for more detail.) This
method becomes hard for most problems because it involves a daunting amount of compu-
tation if the period or its best known bound is large, as is usually the case. That is why
we think it important to find good bounds on the period. We find some periods here; we
propose related conjectures and problems in Section 8.3.

Any preliminary information about uP(q;n) can reduce the number of required values.
Our main result, Theorem 5.1, reduces that number by 2p − 1 by giving a simple formula
for the second coefficient, γ1, and proving that γ2 is independent of n. (We reduce it by
two more by noting that uP(q; 0) = 0 and uP(q; 1) = δq1, the Kronecker delta.) The proof
of Theorem 5.1 depends on the structure of the subspace Ehrhart functions developed in
Section 4. In Section 6, through an explicit construction involving pieces with one move
direction, we show that γ3 may depend on n, in contrast to the constancy of γ0, γ1, and γ2.

Our formula for the n-Queens Problem (Section 7) is an immediate corollary of Theo-
rem 5.1. It is not clear how practical this formula is, as it has infinitely many terms (though
only finitely many for each q) that become harder and harder to evaluate, but it is precise
and complete and shows a clear structure from which it may be possible to deduce interesting
consequences—which we do not attempt to do here.

We conclude with open problems, of which one, dealing with recurrences satisfied by
uP(q;n) for fixed q (Section 8.2), promises to be superbly important.
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2. Preliminaries

We adopt the concise notation [n] := {1, . . . , n} so that the set of points representing the
squares of an n× n chessboard is

[n]2 = (n+ 1)(0, 1)2 ∩ Z2.

The hyperplane representing an attack between pieces Pi and Pj, located at zi = (xi, yi)
and zj = (xj, yj), in the direction of the basic move m = (c, d), i.e. along slope d/c, is

H
d/c
ij = H

d/c
ji . Its defining equation is d(xj − xi) = c(yj − yi). The precise definition of the

move arrangement is

AP := {H
d/c
ij : (c, d) ∈ M, 1 ≤ i < j ≤ q}.

The Ehrhart quasipolynomial of a rational convex polytope P is EP(n+1) := the number
of integral lattice points in the dilate (n + 1)P. The open Ehrhart quasipolynomial of P is
E◦

P
(n + 1) := the number of integral points in the interior (n + 1)P◦. The open Ehrhart

quasipolynomial of an inside-out polytope (P,A ) is E◦
P,A (n + 1) := the number of integral

points in (n+ 1)P◦ that are not in any hyperplane of A .
We introduce a short notation for a frequently recurring quantity. For U ∈ L (AP), let

κ be the number of pieces involved in the equations that determine U and let Ũ be the
essential part of U, i.e., the subspace of R2κ that satisfies the same attack equations as U.
The “reduced” open Ehrhart quasipolynomial of U is

α(U;n) := E(0,1)2κ∩Ũ(n + 1).

The actual open Ehrhart quasipolynomial is α(U;n)n2q−2κ.
Subspaces U1,U2 ∈ L (AP) are isomorphic if the q copies of P can be relabelled so that

one subspace becomes the other. The type [U] of U is its isomorphism class. For instance,

[H
2/1
12 ] = [H

2/1
25 ] 6= [H

1/2
12 ]. The relabelling is an isomorphism. The group of automorphisms

of U is denoted by AutU.
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3. Two Pieces

We examine an exceedingly small number of pieces, i.e., q = 2. There is a (relatively)
simple way to calculate uP(2;n). Define aP(2;n) to be the number of attacking configurations
of two labelled pieces P (which may occupy the same position; that is considered attacking).
Then

(3.1) uP(2;n) =
1

2!
oP(2;n) =

1

2

[
n4 − aP(2;n)

]
.

Finding aP(2;n) is easy in principle although nontrivial in detail. (See Equation (3.7).) To
begin with, consider a move (c, d) ∈ M, whose slope is the rational fraction d/c, and let

ld/c(b) := the line in R2 with slope d/c and y-intercept b.

We allow d/c = 1/0 = ∞, in which case b is instead the x-intercept. Define

l
d/c
B

(b) := ld/c(b) ∩ [n]2,

the set of positions on the n× n board [n]2 that lie on the line ld/c(b). The multiset of line
sizes,

Ld/c(n) :=
{
|l
d/c
B

(b)| : l
d/c
B

(b) 6= ∅
}
,

is finite and the sum of its entries is n2. We need to know the the exact contents of Ld/c(n).
Two cases are elementary:

L0/1(n) = L1/0(n) = {nn},

L1/1(n) = L−1/1(n) = {12, 22, . . . , (n− 1)2, n1}.

Lemma 3.1. Assume 0 < c ≤ d are relatively prime integers. Let n̄ := (n mod d). The
multiplicities of line sizes in Ld/c(n) are as in the following table:

Line size 1 ≤ l < ⌊n
d
⌋ ⌊n

d
⌋ ⌊n

d
⌋ + 1

Multiplicity 2cd (d− n̄)(n− c⌊n
d
⌋) + c(n̄+ d) n̄(n− c⌊n

d
⌋)

Proof. Let δ := ⌊n/d⌋ = (n− n̄)/d; note that δ ≤ ⌊n/c⌋.

Each nonempty line l
d/c
B

(b) has a lowest point

(x, y) ∈ Z := {(x, y) ∈ [n]2 : x ≤ c or y ≤ d},

and conversely, each point in Z is the lowest point of a different line l
d/c
B

(b). If we rename
the line lB(x, y), the naming is unique and the points on lB(x, y) are the points of the form
(x, y)+k(c, d) for k = 0, . . . , k̄, where k̄ is the largest integer such that (x, y)+ k̄(c, d) ∈ [n]2.
Solving this last restriction for k̄, we find that

x ≤ n =⇒ k̄ ≤ (n− x)/c and y ≤ n =⇒ k̄ ≤ (n− y)/d.

Hence, k̄ = min
(
⌊(n− x)/c⌋, ⌊(n− y)/d⌋).

In order to calculate the cardinality of a line lB(x, y) for (x, y) ∈ Z we pick out special
subrectangles in [n]2 (illustrated in Figure 1). First are the lower and left borders:

I := {(x, y) ∈ [n]2 : y ≤ d}, J := {(x, y) ∈ [n]2 : x ≤ c}.

Define new c× d rectangles on the bottom edge, from right to left,

Ii := {(x, y) ∈ I : n− ci < x ≤ n− c(i− 1)} for i = 1, . . . , δ,
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I+

I−

I1I2· · ·Iδ

J1

J2

•
•
•

Jδ

d

c

Figure 1. The division of [n]2 into the shaded border region Z, with its
subdividing rectangles, and the remainder of the board. (The illustration
shows the case where Iδ and Jδ do not overlap.)

and on the left edge, from the top down,

Jj := {(x, y) ∈ J : n− dj < y ≤ n− d(j − 1)} for j = 1, . . . , δ.

Thus, I1 occupies the bottom right corner of [n]2 and J1 occupies the top left corner of [n]2.
Also, Jδ occupies the upper half of the left end of I.

Then, subdivide the remainder of Z (that is, the part of I to the left of Iδ and not in Jδ)
into lower and upper halves:

I− := {(x, y) ∈ I : y ≤ n̄, 1 ≤ x ≤ n− cδ},

I+ := {(x, y) ∈ I : y > n̄, c+ 1 ≤ x ≤ n− cδ}.
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There is a critical value of x, namely, n− cδ, such that k̄ = ⌊(n− x)/c⌋ if x > n− cδ and
k̄ = ⌊(n− y)/d⌋ if x ≤ n− cδ. Hence, we know the size of any line by the formula

(3.2) |lB(x, y)| = k̄ + 1 =





δ + 1, if (x, y) ∈ I−,

δ, if (x, y) ∈ I+,

i, if (x, y) ∈ Ii for i ≤ δ,

j, if (x, y) ∈ Jj for j ≤ δ.

From Equation (3.2) we can write down the multiplicities of all line sizes in the multiset
Ld/c(n) by counting the base points (x, y) in each case. We obtain the multiplicities stated
in the lemma.

The rectangles Iδ and Jδ do not overlap if and only if the left end of Iδ, at x = n− cδ+1,
is to the right of the right edge of Jδ, at x = c; that is, if and only if n − (c + 1)δ ≥ 0;
equivalently, δ = ⌊n/c⌋. As the width of I+ is exactly (n − cδ)− c, if there is overlap then
I+ is the overlap and has negative width, so our computation subtracts exactly the amount
necessary to correct for double counting of the lines based at (x, y) ∈ Iδ ∩ Jδ. (In this case
I+ := {(x, y) ∈ I : y > n̄, c ≥ x > n−cδ}.) Thus, our formula works whether or not overlap
occurs. �

Now, define αd/c(n) to be the number of ordered pairs of positions that attack each other
along slope d/c. Thus,

αd/c(n) := α(H
d/c
12 ;n) = E

(0,1)4∩H
d/c
12

(n+ 1),

the open Ehrhart quasipolynomial of the subpolytope [0, 1]4 ∩ H
d/c
12 of [0, 1]4 that satisfies

the equation of attack, (z2 − z1) · (d,−c) = 0, of H
d/c
12 . Counting attacking pairs of positions

shows that

αd/c(n) =
∑

l∈Ld/c(n)

l2.

The subpolytope is 3-dimensional so the degree of αd/c(n) is 3; therefore its leading coefficient

is the relative volume of [0, 1]4 ∩ H
d/c
12 . Similarly, the number of ordered triples that are

collinear along slope d/c is

βd/c(n) := α(W
d/c
123 ;n) = E

(0,1)6∩W
d/c
123

(n+ 1) =
∑

l∈Ld/c(n)

l3,

where W
d/c
ijk... := H

d/c
ij ∩ H

d/c
jk ∩ · · · , the subspace in which Pi,Pj ,Pk, . . . attack each other

along slope d/c. The leading coefficient is the relative volume of [0, 1]6 ∩W
d/c
123 .

The values of αd/c(n) et al. have to be computed for each slope. Two easy examples are

α0/1(n) = α1/0(n) = n3, α±1/1(n) =

n∑

i=1

i2 +

n−1∑

i=1

i2 =
2n3 + n

3
.(3.3)

and

β0/1(n) = β1/0(n) = n4, β±1/1(n) =
n4 + n2

2
.(3.4)

There are general formulas.
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Proposition 3.1. For relatively prime integers c ≥ 0 and d > 0 with c ≤ d, let n̄ :=
(n mod d) ∈ {0, 1, . . . , d − 1}. The number of ordered pairs of positions that attack each
other along lines of slope d/c is

(3.5) αd/c(n) =

{
3d− c

3d2
n3 +

c

3
n

}
+

n̄(d− n̄)

d2

{
(d− c)n−

c(d− 2n̄)

3

}
.

The period of this quasipolynomial is d.
The number of ordered triples of positions that attack each other along a single line of

slope d/c is

(3.6)

βd/c(n) =

{
2d− c

2d3
n4 +

c

2d
n2

}

+
n̄(d− n̄)

d3

{
3(d− c)n2 − (d− 2c)(d− 2n̄)n+

3cn̄(d− n̄)

2

}
.

The period of this quasipolynomial is d.

Each of these quasipolynomials has an invariant part (in the first set of braces), which
is independent of n̄, i.e., of the residue class of n, and a periodic part (in the second set
of braces), which depends on n̄. When n is a multiple of d, then n̄ = 0 and the equations
reduce to the invariant part.

If the degree is e (which is 3 for αd/c and 4 for βd/c), the coefficients ζ̄e−i(n̄) of n
e−i of the

periodic part have the alternating symmetry ζ̄e−i(d − n̄) = (−1)iζ̄e−i(n̄). For instance, in

Equation (3.5) e = 3 and the periodic part of the coefficient of n (i.e., i = 2) is n̄(d−n̄)
d2

(d− c),
which is invariant under the mapping n̄ 7→ d− n̄ (for 1 ≤ n̄ ≤ d). That is, for any k ∈ Z>0

and any n̄ = 1, 2, . . . , d− 1, ζ̄i(kd+ n̄) = ζ̄i(kd+ (d− n̄)) for all i.
The fact that there is no second leading term will be important in examples.

Proof. The number of attacking pairs is the sum over all lines with slope d/c of |l
d/c
B

(b)|2.
From Lemma 3.1 we can write out the total number:

αd/c(n) = 2cd

δ−1∑

l=1

l2 + [cd+ cn̄ + (d− n̄)(n− cδ)]δ2 + [n̄(n− cδ)](δ + 1)2,

which simplifies to Equation (3.5) after eliminating δ via δ = (n− n̄)/d.
If c < d the period d follows from examining the coefficient of n, which equals c/3 only

when n̄ = 0. If c = d, then both equal 1 and the period is d = 1.
The computation for attacking triples is similar. The total number of such triples is

βd/c(n) = 2cd

δ−1∑

l=1

l3 + [cd+ cn̄ + (d− n̄)(n− cδ)]δ3 + [n̄(n− cδ)](δ + 1)3,

which simplifies to Equation (3.6). The constant term has period exactly d. The n1 term
also has period d, because when c = d, both c and d must equal 1 since they are relatively
prime. �

For the piece P we have the formula

(3.7) aP(2;n) =
∑

(c,d)∈M

αd/c(n)− (|M| − 1)n2,
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which is the sum over all moves (c, d) ∈ M of the number of placements of two labelled
pieces that attack along that direction, reduced by the overcount of two pieces on the same
square, which should be counted only once per square. By Equation (3.1),

(3.8) uP(2;n) =
1

2!
oP(2;n) =

1

2

[
n4 −

∑

(c,d)∈M

αd/c(n) + (|M| − 1)n2
]
.

the number of placements of two labelled pieces that do not attack each other. Then by
Proposition 3.1 we have an explicit formula for uP(2;n).

Theorem 3.1. For (c, d) ∈ M, let ĉ := min(|c|, |d|), d̂ := max(|c|, |d|), and n̄ := (n mod d̂) ∈

{0, 1, . . . , d̂− 1}. On the square board,

uP(2;n) =
1

2!
oP(2;n)

=
1

2
n4 −

1

6

|M|∑

r=1

3d̂r − ĉr

d̂2r
n3 +

|M| − 1

2
n2 −

1

6

|M|∑

r=1

ĉrn

−
1

2

|M|∑

r=1

n̄r(d̂r − n̄r)(d̂r − ĉr)

d̂2r
n+

1

3

|M|∑

r=1

ĉr(d̂r − n̄r)(d̂r − 2n̄r)n̄r

d̂2r
. �

The period of uP(2;n) is Λ := lcm{d̂r : 1 ≤ r ≤ |M|}.

Proof of the period bound. Term r in the penultimate summation has period d̂r; the term
equals 0 only when n̄r = 0. Otherwise the term is positive. It follows that the sum is 0 only
when n is divisible by every d̂r. The final summation similarly has period dividing Λ. �

Notice that the three highest terms are independent of the residue class of n.

Corollary 3.1. The number of combinatorial types of nonattacking configuration of two
pieces is the number of basic moves.

Proof. We already proved this geometrically in Proposition I.5.6; therefore, evaluating uP(2;−1),
which is the number of types by Theorem I.5.3, checks the correctness of Theorem 3.1. We
omit the computation, noting only that n̄r = d̂r−1 and the result is |M|, as it should be. �
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4. Coefficients of Subspace Ehrhart Functions

The more we can say about the open Ehrhart quasipolynomials α(U;n) of subspaces, the
more we can infer about the configuration counting functions.

4.1. Odd and even functions.

The square board has a property that few other boards share (an isosceles right triangle
with a side parallel to an axis being one that does). We remind the reader that a function
f(n) of an integer n is called even or odd if it satisfies f(−n) = f(n) or, respectively,
f(−n) = −f(n).

Theorem 4.1 (Parity Theorem). Consider the square board with any piece P. Let U ∈
L (AP). The function α(U;n) is an odd function of n if dimU is odd and an even function
if dimU is even.

Proof. The crucial property of the square board that makes the theorem true is that the
interior lattice points, (n + 1)(0, 1)2 ∩ Z2, are isomorphic to all the lattice points, (n −
1)[0, 1]2∩Z2, by a translation.1 The equations of the attack hyperplanes are invariant under
that translation, so the two sets of lattice points are equivalent for the inside-out Ehrhart
theory of ([0, 1]2q,AP). Therefore,

α(U;n) := E(0,1)2q∩Ũ(n+ 1) = E[0,1]2q∩Ũ(n− 1).

Because every U ∈ L (AP) meets the open hypercube, (0, 1)2q ∩ Ũ = ([0, 1]2q ∩ Ũ)◦ and both

have dimension dim Ũ. Therefore, E(0,1)2q∩Ũ(t) = E◦
[0,1]2q∩Ũ

(t). By Ehrhart reciprocity,

E[0,1]2q∩Ũ(n− 1) = (−1)dim ŨE◦
[0,1]2q∩Ũ

(−(n− 1)) = (−1)dim ŨE◦
[0,1]2q∩Ũ

(−n + 1)

= (−1)dim ŨE(0,1)2q∩Ũ(−n + 1) = (−1)dimUα(U;−n).

Since dimU ≡ dim Ũ mod 2, that concludes the proof. �

Oddness or evenness of α(U;n) should not be confused with that of its constituent poly-
nomials. The correct constituent properties are the following. Let p(U) denote the period of
α(U;n).

Corollary 4.1 (Constituent Parity). The constituent α0(U;n) is an odd function of n if
dimU is odd and an even function if dimU is even. If p(U) is even, the middle constituent
αp(U)/2(U;n) is also odd or even, respectively. For i ∈ [p(U) − 1], there is the relation
αp(U)−i(U;n) = (−1)dimUαi(U;−n).

Thus, if the period is 2, indeed each constituent is an odd or even polynomial, but that
is not necessarily so for any larger period. For example, the contribution of a hyperplane is

α(H
d/c
12 ;n) = αd/c(n), given by Equation (3.5), with period d. When d ≤ 2 we get an odd

polynomial in n but since d > 2 gives a nonzero constant term the polynomial is no longer
odd.

1A polytope with this property is called Gorenstein with index 2. (We thank a referee for this observation.)
Any Gorenstein board with index 2, such as the aforementioned right triangle, will satisfy the Parity Theorem.
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The preceding corollary can be strengthened by focussing on individual terms. Let U

involve κ pieces and have codimension ν, and write

(4.1) α(U;n) :=

2κ−ν∑

j=0

γ̄j(U)n
2κ−ν−j

and define pj(U) to be the (smallest) period of γ̄j(U), which may be less than the period p(U)
of α(U;n) (indeed, the latter equals lcmj pj(U)). Thus, γ̄j(U) cycles through the functions
γ̄0j(U), . . . , γ̄pj(U),j(U). If p(U) > pj(U), then γ̄ij(U) cycles through more than one period
as αi(U;n) goes through one of its periods. (Notational note: We employ γi for coefficients
of an unlabelled counting function uP(q;n) and γ̄i for a coefficient of a labelled counting
function oP(q;n) or α(U;n).)

Corollary 4.2 (Coefficient Parity). Let 0 ≤ i < pj(U). The constituents of γ̄j(U) satisfy
γ̄pj(U)−i, j(U) = (−1)dimU−jγ̄ij(U).

Assume j 6≡ dimU (mod 2); then γ̄0j(U) = 0 and (if pj(U) is even) γ̄pj(U)/2, j(U) = 0. In
particular, if pj(U) ≤ 2 then γ̄j(U) = 0.

Note that dimU can be replaced in these formulas by dim Ũ since they have the same
parity.

4.2. The second leading coefficient of a subspace Ehrhart function.

We saw in Proposition 3.1 that α(Uκ;n) has no second leading term (the term of n2κ−codimU−1)

when U is either a hyperplane H
d/c
ij or a subhyperplane of the form W

d/c
ijk . This is a general

phenomenon.

Theorem 4.2. For every subspace U ∈ L (AP), the coefficient γ̄1(U) of the second leading
term in α(U;n) is zero.

Proof. We apply the theorem of McMullen [4, Theorem 6] that in the (open) Ehrhart
quasipolynomial γ0(P)n

d+γ1(P)n
d−1+ · · ·+γd(P) of a rational convex polytope P of dimen-

sion d, the coefficient γi(P) has period that is a divisor of a quantity πi called the i-index
of P, defined as the smallest positive integer π such that every (d − i)-face of P contains a
rational point (it need not be in lowest terms) with denominator π. (This is equivalent to
the face’s affine span being generated by rational points with denominator π, which is Mc-
Mullen’s definition.) Thus, for instance, if every facet of P spans an affine flat that contains
an integral point, the 1-index of P is 1, i.e., γ̄1(P) is constant.

We apply McMullen’s theorem to P = U∩ [0, 1]2q where U ∈ L (AP); that is, P is the part
of the subspace U bounded by the inequalities xi, yi ≥ 0 and xi, yi ≤ 1 for i ∈ [2q]. A face
of P is the restriction of P to some subset of boundary hyperplanes; i.e., we fix some set of
xi’s and yi’s to be 0 and some other set to be 1.

The equations of U have the form zj − zi ⊥ (dr,−cr) for some i < j and (cr, dr) ∈ M.
The equation means that zj − zi is parallel to mr. If U satisfies zj − zi ‖ mr for more than
one basic move mr, then zi = zj so we can reduce q by identifying the ith and jth pieces;
therefore we may assume that no pair of pieces appears in more than one equation satisfied
by U.

First, consider i = 1; that means we choose one xi or yi to be 0 or 1. Let that be x1.
Define ∆z := (z, z, . . . , z) ∈ R2q. All such points with z ∈ [0, 1]2 belong to P; therefore in
particular, each facet P ∩ {x1 = k} (where k = 0 or 1) contains the integral point ∆(k, 1).
Consequently, the index π1 = 1. The Parity Theorem 4.1 implies then that γ̄1(U) = 0. �
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5. The Form of Coefficients on the Square Board

On the square board it is possible to get fairly detailed information about the highest-order
coefficients of the counting functions of nonattacking configurations.

First we list the exact contributions to oP(q;n) of subspaces with low codimension. For

(c, d) ∈ M let ĉ = min(|c|, |d|) and d̂ = min(|c|, |d|) and define n̄ := (n mod d̂) ∈ {0, 1, . . . , d̂−
1}.

Lemma 5.1. The total contribution to oP(q;n) of the subspace of codimension 0 is n2q.
The total contribution of the subspaces of codimension 1 is −

(
q
2

)
A1(n)n

2q−4 where

(5.1) A1(n) :=
∑

m∈M

αm(n) = a10n
3 + a12n+ a13

with

a10 =
∑

(c,d)∈M

3d̂− ĉ

3d̂2
,

a12 =
∑

(c,d)∈M

ĉd̂2 + 3(d̂− ĉ)n̄(d̂− n̄)

3d̂2
,

a13 = −
∑

(c,d)∈M

ĉ

3d̂2
n̄(d̂− n̄)(d̂− 2n̄).

The period of A1(n), as well as that of a12, is Λ := lcm{d̂r : 1 ≤ r ≤ |M|}.

The appearance of n̄ in a12 and a13 means that they depend on n through its residue class
modulo d̂, unlike a10, which is a constant.

Proof. The sign in −A1(n) comes from the fact that the Möbius function µ(0̂,H) = −1 for
a hyperplane H. The binomial coefficient counts the number of pairs {i, j}. The evaluation
of A1 comes from Proposition 3.1 and the periods come from its proof. �

Theorem 5.1 (Square-Board Coefficient Theorem). On the square board the coefficients γi
for i ≤ 2 are independent of n. The coefficient q!γi of n

2q−i in oP(q;n) is a polynomial in q,
of degree 2i, which depends periodically on n. The leading coefficients are

q!γ0 = 1,

q!γ1 = −(q)2
a10
2
,

and for i ≥ 1 the coefficients are

q!γi =: (q)2iθ̄i,2i + (q)2i−1θ̄i,2i−1 + · · ·+ (q)2θ̄i,2

=
2i∑

κ=2

(q)κ

min(i,2κ−2)∑

ν=⌈κ/2⌉

∑

[Uν
κ]

µ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

γ̄i−ν(U
ν
κ),(5.2)
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in which θ̄i,2i = (−a10/2)
i/i!, the inner sum ranges over intersection subspace types [Uν

κ] such
that Uν

κ ∈ L (A q
P ), and

θ̄i,2 =





−a10/2 for i = 1,

(|M| − 1)/2 for i = 2,

−a12/2 for i = 3,

−a13/2 for i = 4,

0 for i > 4.

The period is a divisor of the least common multiple of the periods of all counting quasipoly-
nomials α(U;n) for U ∈ L (A q

P ) such that codimU ≤ i.

Proof. The polynomiality of q!γi is part of Theorem I.4.2, as is the constancy (with respect
to n) of γ0 and γ1. The value of γ2 is determined by subspaces of codimension 2 or less. The
contribution from codimension 2 is independent of n since it is the sum of leading coefficients.
By Equation (5.1), hyperplanes contribute zero. The contribution from R2q is zero. Thus,
γ2 is independent of n.

It remains to investigate the individual coefficients q!γi more closely. Because the aux-
iliary variable N now is simply n2, we recalculate the formula for oP(q;n) by rewriting
Equation (I.2.1), taking account of the simple form α(R2q;n) = n2q, substituting via Equa-
tion (4.1), and simplifying as in the proof of Theorem I.4.2, to get

(5.3) oP(q;n) = n2q +
2i∑

κ=2

(q)κ

min(i,2κ−2)∑

ν=⌈κ/2⌉

∑

[Uν
κ]

µ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

2κ−ν∑

j=0

γ̄j(U
ν
κ)n

2q−ν−j ,

summed over intersection subspace types [Uν
κ] such that Uν

κ ∈ L (A q
P ). So, for i > 0 we have

q!γi =
2i∑

κ=2

(q)κ

min(i,2κ−2)∑

ν=⌈κ/2⌉

∑

[Uν
κ]

µ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

γ̄i−ν(U
ν
κ).

The next step is to determine the leading term and q!γ1. To do so we study one isomor-
phism type of subspace:

Type U
i
2i: The subspaces U

i
2i are those isomorphic to U = H

l1
12 ∩ · · · ∩ H

li
2i−1,2i, where

l1, . . . , li ∈ M. The Möbius function is
∏

j µ(0̂,H
lj
2j−1,2j) = (−1)i. The automorphisms

depend on the selection of slopes. Write M = {m1, m2, . . . , ms} where s = |M|. Suppose kr
hyperplanes have slope mr. Then an automorphism of U can reverse the subscripts in any
pair and it can permute the hyperplanes with the same slope. Thus, |Aut(U)| = 2ik1! · · ·ks!.
The value of α(U;n) is

∏s
r=1 α

mr(n)kr , so the total contribution of all subspaces of type Ui
2i

is

∑

(k1,...,ks)

(−1)i
1

2ik1! · · · ks!

s∏

r=1

αmr(n)kr = (−1)i
1

2ii!

∑

(k1,...,ks)

i!

k1! · · · ks!

s∏

r=1

αmr(n)kr

= (−1)i
1

2ii!
A1(n)

i,

the sum being taken over all s-tuples (k1, . . . , ks) of nonnegative integers whose total is s.
Since the leading coefficient of A1(n) is a10, the coefficient of (q)2i in Equation (5.2) is −a10/2.
Since we assumed i > 0, that implies the complete formula for q!γ1.
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The term of (q)2 appears only when 2 ≥ i/2, i.e., i ≤ 4. The subspaces can be U1
2, i.e.,

hyperplanes, and U2
2, i.e., W

=
12 and its isomorphs. (W=

12 is the subspace of configurations in
which z1 = z2.)

Type U1
2: Every hyperplane has µ(0̂,U) = −1 and |AutU| = 2. Thus, the contribution

of all hyperplanes is −A1(n)/2. Denoting (as before) the coefficient of n3−j by a1j , the
hyperplanes contribute −a1,i−1/2 to θ̄i2. That is zero when i = 2.

Type U2
2: We have µ(0̂,W=

12) = |M| − 1 and |AutW=
12| = 2. Since α(W=

12;n) = n2, the
contribution of [W=

12] to θ̄i2 is (|M|−1)γ̄2−2(W
=
12)/2 = (|M|−1)/2 when i = 2, and otherwise

zero. �

If we could obtain the coefficient θ̄i,2i−1 of (q)2i−1 we would have, in particular, the missing
coefficient θ̄23 of a general formula for q!γ2. There is but one difficult step in that. Since
ν = i,

θ̄i,2i−1 =
∑

[U]:U=Ui
2i−1

µ(0̂,U)
1

|Aut(U)|
γ̄0(U).

The subspaces Ui
2i−1 have the form

(
H

l1
12∩H

l2
23

)
∩H

l3
45∩· · ·∩H

li
2i−2,2i−1, where l1, . . . , li ∈ M.

There are two types: l1 = l2 and l1 6= l2. The automorphism group has order H2i−2 where
H := |Aut

(
H

l1
12 ∩H

l2
23

)
|. The contribution of all subspaces of either type is

µ(0̂,Hl1
12 ∩H

l2
23)

H2i−2
α(Hl1

12 ∩H
l2
23;n) · (−1)i−2A1(n)

i−2,

whose leading coefficient is

µ(0̂,Hl1
12 ∩H

l2
23)

H

(
−

a10
2

)i−2
γ̄0(H

l1
12 ∩H

l2
23).

So we need the value of γ̄0(H
l1
12 ∩H

l2
23) summed over all permitted slope pairs (l1, l2).

Type Ui
2i−1a: If l1 = l2, then H

l1
12 ∩ H

l2
23 = W

l1
123, µ(0̂,W l1

123) = 2, H = 3!, and∑
l1
γ̄0(W

l1
123) = b10 :=

∑
(c,d)∈M(2d̂ − ĉ)/2d̂3 (from Proposition 3.1). The total contribu-

tion of this type to the coefficient is therefore

(−1)i
1

3 · 2i−2(i− 2)!
ai−2
10 b10.

Type U
i
2i−1b: When l1 6= l2 we have µ(0̂,Hl1

12 ∩H
l2
23) = 1 and H = 1, but α(Hl1

12 ∩H
l2
23;n)

for arbitrary slopes l1 and l2 is too complicated for us. Finding just its leading coefficient
would give θ̄i,2i−1.
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6. One-Move Riders

Theorem 5.1 is best possible for pieces in general. Even for a piece with only one attacking
move, the coefficient γ3 may vary with n with a large period. We prove that here (without
appealing to the general theory). This leads us to propose that periodic variability of higher
quasipolynomial coefficients occurs, not due to the number of attacking moves, but because
of their slopes.

The intersection lattice L (AP) of a one-move rider P is the partition lattice Πq, so the
Möbius function is known.

Consider a piece P with move set M = {(c, d)}, where c and d are relatively prime
integers such that 0 ≤ c ≤ d and d > 0. Note that a move with c = 0 must have d = ±1, by
nontriviality (the zero move is not allowed) and relative primality.

Proposition 6.1. For a piece P with move set M = {(c, d)} where 0 ≤ c ≤ d,

uP(1;n) = n2,

uP(2;n) =
1

2

{
n4 +

c− 3d

3d2
n3 −

c

3
n

}

+
n̄(d− n̄)

6d2

{
[3(c− d)]n+ c(d− 2n̄)

}
,

uP(3;n) =
1

6

{
n6 +

c− 3d

d2
n5 −

c− 2d

d3
n4 − cn3 +

c

d
n2

}

+
n̄(d− n̄)

6d3

{[
3d(c− d)

]
n3 +

[
6d+ cd2 − 2cdn̄− 6c

]
n2

+
[
2(d− 2c)(d− 2n̄)

]
n + 3c(d− n̄)n̄

}
,

uP(4;n) =
1

24

{
n8 +

2(c− 3d)

d2
n7 +

c2 − 18cd+ 33d2

3d4
n6 +

18c− 30d− 10cd4

5d4
n5

+
18cd− 2c2

3d2
n4 −

4c

d2
n3 +

c2

3
n2 +

2c

5
n

}

+
n̄(d− n̄)

360d4

{[
90d2(c− d)

]
n5 +

[
30(c2 + 15d2 − 16cd+ cd3 − 2cd2n̄)

]
n4

+ 10
[
6d(−9 + 2d(d− 2n̄)) + c2(d− 2n̄) + 27c(2− d2 + 2dn̄)

]
n3

+ 15
[
2d(−12d+ c(18− cd+ d2)) + 3(−24c+ (16 + c2)d+ 2cd2 + d3)n̄

− 3(c+ d)2n̄2
]
n2

+ 10
[
9cd2 − 9d3 − c2d3 − (27d2 − 81cd+ 5c2d2 − 3cd3)n̄

+ 9(3d+ c(cd− d2 − 9))n̄2 + 6c(d− c)n̄3
]
n

+ c(d− 2n̄)
[
d2(−6 + 5cn̄)− 3dn̄(36 + 5cn̄) + 2n̄2(54 + 5cn̄)

]}
.

For q = 2, 3, 4 the period of uP(q;n) with respect to n is d.
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Proof. The formula for uP(1;n) is trivial. Theorem 3.1 implies the value of uP(2;n); a
combinatorial count similar to that for uP(3;n) and uP(4;n) gives the same result.

Direct combinatorial arguments for q = 3 and 4 give

uP(3;n) =

(
n2

3

)
−

∑

l∈L(n)

(
l

3

)
−

∑

l∈L(n)

(
l

2

)[
n2 − l

]
and

uP(4;n) =

(
n2

4

)
−

∑

l∈L(n)

(
l

4

)
−

∑

l∈L(n)

(
l

3

)[
n2 − l

]
−

∑

{l,l′}⊆L(n)

(
l

2

)(
l′

2

)

−
∑

l∈L(n)

(
l

2

)[(
n2 − l

2

)
−

∑

l′∈L(n)

(
l′

2

)
+

(
l

2

)]
,

where L(n) := Ld/c(n). For instance, uP(4;n) is the number of placements of four non-
attacking pieces, which we count by placing four pieces on any of the n2 positions on the
board and removing those where at least two pieces attack. We must remove the cases where
four pieces are in the same line ld/c(b), those where three pieces are in the same line and the
fourth is in another line, those where two pieces are in the same line ld/c(b) and the remaining
two are both in another line ld/c(b′), and last, those where two pieces are attacking and the
remaining two pieces attack none of the others.

The reasoning for uP(3;n) is simpler so we merely show the steps in the simplification:

uP(3;n) =

(
n2

3

)
−

∑

l∈L(n)

(
l

3

)
−

∑

l∈L(n)

(
l

2

)[
n2 − l

]

=

(
n2

3

)
+ 2

∑

l∈L(n)

(
l

3

)
− (n2 − 2)

∑

l∈L(n)

(
l

2

)

=

(
n2

3

)
+ 2

{
2cd

(
n−n̄
d

4

)
+
[
(d− n̄)

(
n− c

n− n̄

d

)
+ c(n̄+ d)

](n−n̄
d

3

)

+
[
n̄
(
n− c

n− n̄

d

)](n−n̄
d

+ 1

3

)}

− (n2 − 2)

{
2cd

(
n−n̄
d

3

)
+
[
(d− n̄)

(
n− c

n− n̄

d

)
+ c(n̄+ d)

](n−n̄
d

2

)

+
[
n̄
(
n− c

n− n̄

d

)](n−n̄
d

+ 1

2

)}
,

which when expanded (we used Mathematica) gives the constant and periodic parts stated
in the proposition. The simplification of uP(4;n) is similar.

The constant terms of the quasipolynomials for q = 2, 3, 4 have period d since they are
zero only when n̄ = 0. (Recall that c > 0.) The other coefficients have period dividing d
since they depend on n through n̄. �

The equation for uP(3;n) agrees with the formulas for partial queens Q10 and Q01 in
Part III. It would be instructive to find uP(q;n) in general, but this task seems difficult.

The example with (c, d) = (1, 2) simplifies nicely when q = 2, 3, 4.
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Corollary 6.1. For a piece P with move set M = {(1, 2)}, the following formulas hold.

uP(2;n) =

{
n4

2
−

5n3

24
−

11n

48

}
+ (−1)n

n

16
,

uP(3;n) =

{
n6

6
−

5n5

24
+

n4

16
−

11n3

48
+

7n2

48
+

1

32

}
+ (−1)n

{
n3

16
−

n2

16
−

1

32

}

uP(4;n) =

{
n8

24
−

5n7

48
+

97n6

1152
−

131n5

960
+

223n4

1152
−

17n3

192
+

137n2

2304
−

73n

1920

}

+ (−1)n
{
n5

32
−

29n4

384
+

3n3

64
−

35n2

768
+

7n

128

}
.

In each formula of Proposition 6.1 the coefficient γ3 and the entire formula both have
period d. This suggests generalizations.

Proposition 6.2. For a one-move rider with basic move (c, d) where 0 ≤ c ≤ d, the period
of γ3 in uP(q;n) when q ≥ 2 is exactly d. The periodic part is

−
1

(q − 2)!

n̄(d− n̄)(d− c)

2d2
.

Proof. The subspaces that can contribute to q!γ3 are those of codimension at most 3. There is
no contribution from codimension 0 since the open Ehrhart quasipolynomial is α(R2q;n)n2q =
n2q. The contribution from codimension 3 is constant.

The contribution from a hyperplane is the n2q−3 term of µ(0̂,H
d/c
ij )α(H

d/c
ij )n2q−4 = −αd/cn2q−4.

By Equation (3.5), the periodic contribution is −n̄(d − n̄)(d − c)/d2. There are
(
q
2

)
hyper-

planes.
There are two kinds of subspace of codimension 2.

Type U
2
4∗ : This subspace is the intersection of two hyperplanes that involve disjoint

pairs of pieces; i.e., U2
4∗ = H

d/c
ij ∩ H

d/c
kl where {i, j} ∩ {k, l} = ∅. The value of

α(U2
4∗) is (α

d/c)2, whose n5 term, as one can see from Equation (3.5), has coefficient
0. The contribution of this subspace to the n2q−3 term of oP(q;n) = q!uP(q;n) is the
corresponding term in n2q−8α(U2

4∗), so there is no contribution.

Type W
d/c
12 : The contribution of each subspace is βd/c. Each subspace contributes

µ(0̂,W
d/c
12 )α(W

d/c
12 )n2q−6 to oP(q;n), in which the coefficient of n2q−3 is 0.

Thus, there is no contribution except from hyperplanes, whose total periodic contribution
to q!γ3 is easily seen. Dividing by q! gives the periodic part of γ3.

To prove the period is d, note that the periodic part vanishes if and only if n̄ = 0 or c = d.
In the latter case c = d = 1 so the period is d = 1. �

Conjecture 6.1. For a one-move rider with basic move (c, d), the period of uP(q;n) is
exactly max(|c|, |d|).

The period certainly is a multiple of max(|c|, |d|) because of the period of γ3.
The number of combinatorial types is obviously 1 (as stated in Theorem I.5.8). This

implies a check on any formula for uP(q;n), since uP(q;−1) must equal 1. Applying the
check to uP(2;n), uP(3;n), and uP(4;n) in Proposition 6.1, realizing that n̄ = d − 1, does
give uP(q;−1) = 1 for q = 2, 3, 4.
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7. A Formula for the n-Queens Problem

Theorem 5.1 covers any number of pieces on any size board. By setting q = n we obtain
what can be regarded as the first closed-form formula (according to [1]) for the n-Queens
Problem, which is the case in which P is the queen in the following result. Let A ∞

P be the
arrangement in the countably-infinite-dimensional vector space R∞ of all move hyperplanes

H
d/c
ij , {i, j} ⊂ Z>0.

Theorem 7.1. The number of ways to place n unlabelled copies of a rider piece P on an
n× n board so that none attacks another is

uP(n;n) =
1

n!

2n∑

i=1

n2n−i

2i∑

κ=2

(n)κ

min(i,2κ−2)∑

ν=⌈κ/2⌉

∑

[Uν
κ]:U

ν
κ∈L (A ∞

P
)

µ(0̂,Uν
κ)

1

|Aut(Uν
κ)|

γ̄i−ν(U
ν
κ).

This formula is very complicated and potentially infinite (potentially rather than actu-
ally, because for each value of n the number of nonzero terms is finite) but it is explicitly
computable. We have not tried to compare its complexity with that of other methods of
counting nonattacking placements.
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8. Questions, Extensions

Work on nonattacking chess placements raises many questions, several of which have
general interest. Besides Conjecture 6.1 and others to appear in later parts, we propose the
following directions for research.

8.1. Detailed improvements.

These problems concern significant loose ends we left in basic counting questions.

(a) Generalize Proposition 3.1 by finding a formula for the number of ways to place q mu-
tually attacking pieces on the same slope line. The starting point is that the number of
such placements in a line of length l is lq, which would be summed. A consequence by
inclusion–exclusion will be a complete solution for one-move pieces, which in turn may
suggest general results about periods.

(b) Extend the formulas for uP(q;n) for q ≤ 4 for a general one-move rider (Section 6) to
larger numbers of pieces. This should give more indications of the behavior of periods.

(c) Evaluate the coefficient of (q)3 in q!γ2 for an arbitrary rider in Theorem 5.1 to get a
complete formula for γ2.

(d) It should be feasible to find an explicit formula for three pieces, similar to that for two
pieces in Theorem 3.1. It would require a solution to Problem 8.1(a) for q = 4. There
is one really new behavior: a subspace of codimension 3 may be given by three slope

hyperplanes of different slopes on three pieces, that is, of type U3
3 = H

d/c
ij ∩H

d′/c′

jk ∩H
d′′/c′′

ik ;

finding α(U) for U3
3 looks harder than for the subspaces solved in Section 3. (Since U

3
3

does not exist for a 2-move rider, 2-move riders could be the first to work on.)

8.2. Recurrences and their lengths.

Kotěšovec obtained empirical formulas for uP(q;n) for relatively large numbers q of various
pieces (queen, bishop, nightrider, et al.) by computing the values for n = 1, 2, . . . , N where
N is fairly large, and looking for a heuristic recurrence relation. He derives a generating
function from that recurrence, then uses the generating function to get a quasipolynomial
formula. Since the recurrence is heuristic, the formula is unproved. To prove his formula,
if the period is p, he has to compute up to about N = 2pq, because the degree of the
quasipolynomial being 2q, there are 2pq undetermined coefficients (the leading coefficient
being known). Worse, the period p is unknown. But if the recurrence is much shorter than
p, he will find a recurrence (without proof) from a much smaller value of N . That seems
always to be the case if p is large. In other words, there seems to be a recurrence for uP(q;n)
that is much shorter than p. Can our method explain this?

The length of the recurrence is the degree of the denominator of the generating function of
uP(n) when it is reduced to lowest terms. The explanation of a (relatively) short recurrence
is that the generating function, which has the standard form f(x)/(1−xp)2q where f(x) is a
polynomial and p is the period, is not in lowest terms. Thus, there seems to be a systematic
common factor of the numerator and denominator when expressed in standard form. (One
instance is Kotěšovec’s conjecture about the denominator for q queens [3, 2nd ed., p. 14; 6th
ed., p. 22].) Essentially nothing is known about the presumed common factor, starting with
why it exists. This seems the most important research problem in the subject.

8.3. Period bounds.
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As we saw in Section 8.2 and will see throughout this series, periods and period bounds
(which usually are denominators of inside-out polytopes) are essential information in ob-
taining formulas. However, the period of the whole quasipolynomial uP(q;n) is not the best
indicator of the difficulty of computing uP(q;n). If we know the periods pi of the coefficients
γi, the number of unknowns in interpolating the quasipolynomial from data becomes less
than the number 2pq mentioned in Section 8.2. Precisely stated, the number of undeter-
mined coefficients in uP(q;n) (for fixed q), hence the number of values that are needed to

determine all coefficients, is
∑2q

i=1 pi, which in known examples is much smaller than 2pq.
The difficulty is that it is a large task to compute the periods of all coefficients. Thus,

we would like to have a simple “universal” bound on pi that depends on q, i, and the set
of moves, and is easy to compute. To that end we offer a few conjectures of practical or
theoretical interest.

8.3.1. Plausible bounds.
For a piece P with move set M, the move range ‖P‖ is the maximum coordinate magnitude

of a basic move, that is,

‖P‖ := max
(cr ,dr)∈M

d̂r, where d̂r := max(|cr|, |dr|).

For each positive integral distance λ there is a “largest” piece Pmax
λ with move range λ; its

basic move set is Mλ := {(c, d) : |c|, |d| ≤ λ, gcd(c, d) = 1}, which consists of every basic
move consistent with having move range λ. For instance, Pmax

1 is the queen and Pmax
2 is the

combined queen and nightrider.

Conjecture 8.1. Among all pieces with ‖P‖ ≤ λ, Pmax
λ maximizes the period of every

coefficient γi. (We assume here that q is fixed.)

Problem 8.1. Find the period of uPmax

λ
(q;n) and those of its coefficients. Or find reasonably

close bounds.

These questions are surely hard and probably of theoretical interest only. In particu-
lar, Kotěšovec conjectures [3, sixth ed., p. 31] that the period of the queen, Q = Pmax

1 , is
lcm(1, 2, . . . , Fq), Fq being the Fibonacci number. The period of the nightrider N, which has
move range ‖N‖ = 2, grows hugely with q. It seems probable that for each λ the period
of Pmax

λ grows extremely rapidly with q (and also with λ), but if Kotěšovec is right, it may
follow a discernible pattern. If so, that pattern may be of use.

8.3.2. Observed bounds.
What we most want, though, is a simple formula in terms of, say, q and ‖P‖ that gives

an upper bound on the period p, or better, which is guaranteed to have p as a divisor. We
have no conjecture about this, but we propose a low bound on the periods of the highest
nonconstant coefficients. Define

Λ := lcm{d̂r : mr ∈ M}.

Conjecture 8.2. The period of γ3 is 1 or Λ. (We see period Λ for two pieces—see Theo-
rem 3.1; for any number of one-move riders—see Proposition 6.2; for three partial queens—see
Part III; and for two partial nightriders—see Section IV.6.)

Conjecture 8.3. The period of γ4 divides Λ.
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A second kind of maximal piece, suggested by Conjectures 8.2 and 8.3, is Plcm
λ , whose move

set consists of all moves (c, d) such that d̂|λ. It might be called “lcm-maximal”. Conceivably
it may be more natural than Pmax

λ for bounding periods.

Conjecture 8.4. Among all pieces with lcm{d̂r : mr ∈ M} = λ, Plcm
λ maximizes the period

of every coefficient γi. (We assume here that q is fixed.)

Problem 8.2. Find the period of uPlcm

λ
(q;n) and those of its coefficients. Or find reasonably

close bounds.

8.3.3. The geometry of coefficient periods.
Despite the hopes expressed in the preceding conjectures, the most effective way to bound

periods may be to find subspace denominators by geometrical computation. Geometry also
suggests a general monotonicity property.

We see in formulas here and in Parts III (Theorem III.3.1) and IV and in Kotěšovec’s book
[3] that the period pi of γi tends to increase with i. The geometry suggests that should be a
general truth. Let L i

0 = {U ∈ L (AP) : codimU ≤ i}. Each γi depends on the subspaces in
L i

0 . Define the denominator Dq
i of the system (Bq,L i

0 ) to be the least common denominator
of coordinates of all points determined by intersecting a subspace U ∈ L i

0 with the boundary
of [0, 1]2q. Every point so determined for i is also so determined for i+ 1, since L i

0 ⊆ L
i+1
0 .

It follows that each Dq
i+1 is a multiple of Dq

i . By Ehrhart theory pi divides D
q
i ; we expect pi

to increase weakly with i.

Conjecture 8.5. The periods pi of uP(q;n) are weakly monotonically increasing: 1 = p0 =
p1 ≤ · · · ≤ p2q. (If so, then the whole period p = p2q.) More precisely, pi divides pi+1.

And here is a final, stronger conjecture. In Ehrhart theory in general the period need not
equal the denominator, but in our formulas we always find equality.

Conjecture 8.6. The period p of uP(q;n) equals the denominator D([0, 1]2q,AP). The
period pi of γi in uP(q;n) equals D

q
i .
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Appendix: Dictionary of Notation

This dictionary refers to the initial definition of the notation in this article, where appli-
cable. The reader may wish to refer to the dictionary of notation from Part I as well.

a1i coefficients of A1(n) (p. 12)
aP(2;n) # of attacking configurations (p. 5)
b y-intercept of ld/c(b) (p. 5)
(c, d), (cr, dr) coordinates of basic move (p. 5)
d/c . . . . . . . . . . . . . . . . . . slope of a line (p. 5)

(ĉ, d̂) (min,max) of c, d (p. 9)
l index for Ld/c(n); i.e., line size (p. 5)
ld/c(b) line of slope d/c, y-intercept b (p. 5)

l
d/c
B

(b) = ld/c(b) ∩ [n]2 (p. 5)
mr = (cr, dr), m = (c, d) basic move (p. 5)
n size of square board (p. 2)
n+ 1 dilation factor for board (p. 2)
[n] = {1, . . . , n} (p. 4)
[n]2 square board (p. 4)

n̄ . . . . . . . . . . . . . . . . . . . . n mod d̂ (p. 5)
oP(q;n) # of nonattacking labeled configurations (p. 3)
p period of counting quasipolynomial (p. 3)
p(U) period of quasipolynomial α(U;n) (p. 3)
pj(U) period of coefficient γ̄j(U) (p. 3)
q . . . . . . . . . . . . . . . . . . . . # of pieces on a board (p. 2)
r move index
uP(q;n) # of nonattacking unlabeled configurations (p. 2)
z = (x, y), zi = (xi, yi) piece position (p. 5)

α(U;n) quasipolynomial for a subspace (p. 4)
αi(U;n) constituent of α(U;n) (p. 4)
αd/c(n) # of 2-piece collinear attacks (p. 7)
βd/c(n) # of 3-piece collinear attacks (p. 7)
γi . . . . . . . . . . . . . . . . . . . coefficient in unlabeled counting function uP (p. 3)
γ̄j(U) coefficient in α(U;n) (p. 11)
δij Kronecker delta (p. 3)
δ = ⌊n/d⌋ (p. 5)
ζ̄i coefficient in periodic part (p. 8)
θ̄i,κ . . . . . . . . . . . . . . . . . . coefficient of (q)κ in q!γi (p. 12)
κ # of pieces involved in a subspace (p. 4)
µ Möbius function of L (A ) (p. 2)
ν codimension of a subspace (p. 4)
πi i-index of P (p. 11)
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A1(n) # of attacking ordered pairs (p. 12)
D denominator of polytope or inside-out polytope (p. 3)
EP Ehrhart quasipolynomial (p. 4)
E◦

P
. . . . . . . . . . . . . . . . . . open Ehrhart quasipolynomial (p. 4)

E◦
P,A inside-out open Ehrhart quasipolynomial (p. 4)

H size of automorphism group (p. 14)
I, J , Ii, Jj subsets of Z (p. 5)
N auxiliary variable (p. 13)
Z . . . . . . . . . . . . . . . . . . . . lower left border of [n]2 (p. 5)

Ld/c(n) multiset of line sizes (p. 5)
M set of basic moves (p. 4)

AP move arrangement of piece P (p. 4)
B,B◦ closed, open board polygon (p. 2)

H
d/c
ij hyperplane of move (c, d) (p. 4)

L intersection lattice (p. 2)
P, P◦ . . . . . . . . . . . . . . . . polytope, open polytope (p. 2)
(P,AP) inside-out polytope (p. 2)
U subspace in intersection lattice (p. 4)
[U] subspace type (p. 4)

Ũ essential part of U (p. 4)

W
d/c
ij... . . . . . . . . . . . . . . . . subspace of slope relation (p. 7)

W
=
ij... subspace of equal position (p. 14)

R real numbers
Z integers

P piece (p. 2)
‖P‖ move range of piece (p. 20)

Λ lcm of move extents (p. 20)
Πq lattice of partitions of [q] (p. 15)

Aut(U) subspace automorphism group (p. 4)
codim(U) subspace codimension
dim(U) subspace dimension
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