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A q-QUEENS PROBLEM

V. SOME OF OUR FAVORITE PIECES:

QUEENS, BISHOPS, ROOKS, AND NIGHTRIDERS

SETH CHAIKEN, CHRISTOPHER R. H. HANUSA, AND THOMAS ZASLAVSKY

Abstract. Parts I–IV showed that the number of ways to place q nonattacking queens or
similar chess pieces on an n× n chessboard is a quasipolynomial function of n whose coeffi-
cients are essentially polynomials in q. For partial queens, which have a subset of the queen’s
moves, we proved complete formulas for these counting quasipolynomials for small numbers
of pieces and other formulas for high-order coefficients of the general counting quasipolyno-
mials. We found some upper and lower bounds for the periods of those quasipolynomials
by calculating explicit denominators of vertices of the inside-out polytope.

Here we discover more about the counting quasipolynomials for partial queens, both
familiar and strange, and the nightrider and its subpieces, and we compare our results
to the empirical formulas found by Kotěšovec. We prove some of Kotěšovec’s formulas
and conjectures about the quasipolynomials and their high-order coefficients, and in some
instances go beyond them.
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1. Introduction

We apply our study of nonattacking chess pieces from Parts I–IV [3, 4, 5, 6] to standard
chess pieces—the queen, bishop, and rook (even the rook is interesting)—and our favorite
fairy chess piece, the nightrider, which moves any distance in the directions of a knight’s
move. And to the “partial queens” and “partial nightriders” that, like the bishop and rook,
have a subset of the queen’s or the nightrider’s moves.

The classic n-Queens Problem asks for the number of nonattacking configurations of n
queens on an n× n chessboard. It has no practical general solution; the only known general
formulas are the computationally impractical ones in Part II [4] and in [14]. We began our
study by separating n, the board size, from q, the number of queens, arriving at the q-Queens

Problem: In how many ways can q queens be placed on an n×n chessboard so that no queen
attacks another? In Parts I–IV we developed a general geometrical theory of this number,
uQ(q;n), as a function of integers n and q > 0, for all chess and fairy chess pieces that, like
the queen, bishop, rook, and nightrider, have moves of unlimited length. Such pieces are
called riders by the fairy chess community.1 The problem, given a rider P, is this:

Problem 1. Find an explicit formula for uP(q;n), the number of nonattacking configurations
of q unlabelled pieces P on an n× n board.

Finding a single comprehensive formula for uP(q;n) for a single piece P, for all q and n,
for any piece other than the rook and bishop—and especially for the queen—looks impos-
sible. Nevertheless, in Part I we established that uP(q;n) is a quasipolynomial function of
n of degree 2q, that is, it is given by a cyclically repeating sequence of polynomials (the
quasipolynomial’s constituents); so it can be written as

uP(q;n) = γ0(q)n
2q + γ1(q)n

2q−1 + γ2(q)n
2q−2 + · · ·+ γ2q(q)n

0

where the coefficients γi(q) vary cyclically, depending on nmodulo a number p, the period, but
not on n itself. The period is a fundamental number; it tells us how much data is needed to
rigorously determine the complete quasipolynomial, since 2qp values of the counting function
suffice. Furthermore, in each residue class of n, q!γi(q) is a polynomial function of q of degree
2i. Still further, substituting n = −1 gives the number of combinatorially distinct types of
nonattacking configurations, as explained in Section 2.

In this part we present our current state of knowledge about naturally interesting pieces.
The goal is to prove exact formulas for a fixed number q of each piece, where q is (unavoid-
ably) small, and along the way to see how many complete formulas we can prove, for all q,
for coefficients of high powers of n. Our contributions include rigorous partial answers to
Problem 1 for the queen, bishop, nightrider, and pieces with subsets of their moves. Some

1Fairy chess is chess with unusual pieces, rules, or boards.
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of our rigorous answers, especially for partial nightriders, are new; others were previously
known heuristically (by Kotěšovec and others; see [12]) but only a few were proved.

Three pieces were previously solved. The rook and semirook are elementary. Arshon and
Kotěšovec proved a complete formula for the bishop, but it is not a quasipolynomial and
cannot have n = −1 substituted to get the number of combinatorial types; thus we consider
the bishops problem only partially solved.

How large a number q and how many coefficients we can handle depends on the piece. For
the rook, naturally, we get well-known formulas for all q, although our viewpoint does lead
to an apparently new property of Stirling numbers (Proposition 4.5). At the other extreme
we have only very partially solved three nightriders, for which the formula was previously
found heuristically, without proof, by Kotěšovec. No formula for four nightriders has even
been guessed; it is conceivable that it could be obtained by a painstaking analysis using our
method, but that is not probable, judging by the 11-digit denominator (see Table 7.1; the
denominator is a multiple of the period, conjecturally equal to it). We offer no hope for five.

Although in Ehrhart theory periods often are less than denominators, we observe equality
in our solved chess problems. We propose:

Conjecture 2. For every rider P and every q ≥ 1, the period of the counting quasipolynomial
q!uP(q;n) equals the denominator of the inside-out polytope for q copies of P.

We remind the reader that Kotěšovec’s book [12] is replete with formulas, mostly generated
by himself, for all kinds of nonattacking chess problems. Properties of Kotěšovec’s bishops
and queens formulas inspired many of our detailed results.

Anyone who wants to know the actual number of nonattacking placements of q of our
four principal pieces will find answers in the Online Encyclopedia of Integer Sequences [15].
Table 1.1 gives sequence numbers in the OEIS. The first row is the sequence of square
numbers. After that it gets interesting.

q Rooks Bishops Queens Nightriders

1 A000290 A000290 A000290 A000290

2 A163102* A172123 A036464 A172141

3 A179058 A172124 A047659 A173429

4 A179059 A172127 A061994 —

5 A179060 A172129 A108792 —

6 A179061 A176886 A176186 —

7 A179062 A187239 A178721 —

8 A179063 A187240 — —

9 A179064 A187241 — —

10 A179065 A187242 — —

Table 1.1. Sequence numbers in the OEIS for nonattacking placements of
q rooks, bishops, queens, and nightriders. In each sequence the board size n
varies from 1 to (usually) 1000. * means n in the OEIS is offset from our value.

A summary of this paper: Sections 2 and 6.1 recall essential notation and formulas from
Parts I–IV and describe the concepts we use to analyze periods; in Section 6.2 we strengthen
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the Parity Theorem from Part II. After connecting to our theory the known results on rooks
and semirooks in Section 3, we discuss the current state of knowledge and ignorance about
bishops and semibishops in Section 4. Section 5 treats the queen as well as the partial queens
that are not the rook, semirook, bishop, and semibishop. Section 7 concerns the nightrider
and its sub-pieces, whose nonattacking placements have not been the topic of any previous
theoretical discussion that we are aware of and consequently receive detailed treatment.

We conclude with questions related to these ideas and with proposals for research. For
example, we suggest in Section 8.1 fairy chess pieces with relatively simple behavior that
might provide insight into the central open problem of a good general bound on the period
of the counting quasipolynomial in terms of q and the set of moves.

We append a dictionary of notation for the benefit of the authors and readers.

2. Essentials, Mostly from Before

Our board B is the unit square [0, 1]2. (In Section 4.2 it may also be a right triangle;
for simplicity here we assume the square.) Pieces are placed on integral points, (x, y) for
x, y ∈ [n] := {1, . . . , n}, in the interior of an integral dilation (n+1)B of the board; e.g., the
square board (n + 1)[0, 1]2 has interior (n + 1)(0, 1)2. We also call these integral points the
board ; it will always be clear which board we mean.

A piece P has moves, which are the integral multiples of a finite set M of basic moves,
which are non-zero, non-parallel integral vectors m = (c, d) ∈ Z2. For instance, M =
{(1, 0), (1, 1), (0, 1), (1,−1)} for the queen and M = {(2, 1), (1, 2), (2,−1), (1,−2)} for the
nightrider. Each basic move must be reduced to lowest terms and no basic move may be a
scalar multiple of another. Thus, the slope d/c contains all necessary information and can
be specified instead of m itself. We say two distinct pieces attack each other if the difference
of their locations is a move. In other words, a piece in position z := (x, y) ∈ Z2 attacks any
other piece in the lines z + rm for r ∈ Z and m ∈ M. Attacks are not blocked by a piece in
between, and they include the case where two pieces occupy the same location.

A configuration z = (z1, . . . , zq) is a choice of locations zi := (xi, yi) for the q pieces on the
dilated board (n + 1)B, including the boundary. Thus z is an integral point in the dilated
polytope (n+ 1)Bq = (n+ 1)[0, 1]2q. For a nonattacking configuration the pieces must be in
the interior, (n+1)(0, 1)2, and no two pieces may attack each other. In other words, if there
are pieces at positions zi and zj , then zj − zi is not a multiple of any m ∈ M.

The attack lines determine move hyperplanes in R2q, H
d/c
ij : (zj − zi) · m⊥ = 0 for each

m = (c, d) ∈ M, where m⊥ := (d,−c), whose integral points in the dilated open hypercube
(n + 1)(0, 1)2q represent attacking configurations. The nonattacking configurations are the
integral points in the open hypercube and outside every hyperplane, so it is they we want to
count. The combination of the hypercube [0, 1]2q and the set AP of hyperplanes is called an
inside-out polytope [2]. Its vertices are all the points in [0, 1]2q that are intersections of move
hyperplanes and facet hyperplanes of [0, 1]2q. From [2] we know oP(q;n) is a quasipolynomial
whose period divides the denominator D([0, 1]2q,AP), defined as the least common multiple
of the denominators of all coordinates of vertices. In Section 6 we continue this exposition
for use with the nightrider.

The bishop, rook, and queen are examples of partial queens. A partial queen Qhk is a rider
that has h horizontal or vertical basic moves and k basic moves at ±45◦ to the horizontal
(obviously, h, k ≤ 2). We studied partial queens in Part III. Table 2.1 contains a list of
the partial queens with their names and what we know or believe about the periods of
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their counting quasipolynomials. We think four of the partial queens are uniquely special:
we believe the rook, semirook, semibishop, and anassa are the only rider pieces that have
period 1—that is, whose labelled counting functions are polynomials in n for every number q
of copies. We do know from Theorem IV.2.3 that they are the only riders whose denominators
equal 1.

Name (h, k) q = 2 q = 3 q = 4 q = 5 q = 6 q > 6

Semirook (1, 0) 1 1 1 1 1 1

Rook (2, 0) 1 1 1 1 1 1

Semibishop (0, 1) 1 1 1 1 1 1

Anassa (1, 1) 1 1 1 1 1 1* (q = 7, 8)

Bishop (0, 2) 1 2 2 2 2 2

Semiqueen (2, 1) 1 1 2* 2* 6* 12◦ (q = 7)

Trident (1, 2) 1 2 6* 12◦ 60◦ 420◦ (q = 7)

Queen (2, 2) 1 2 6* (6) 60* 840∗∗ 360360* (q = 7)

Table 2.1. The quasipolynomial periods (and denominators, when known)
for partial queens Qhk. Denominators are defined in Section 6. All known
periods equal the denominators.
* is a number deduced from an empirical formula in [12].

** is deduced from the empirical formula of Karavaev; see [11, 12].
◦ is a value we conjecture.

While the number of nonattacking configurations of unlabelled pieces is uP(q;n), the count-
ing is done with labelled pieces; that number is oP(q;n) = q!uP(q;n). Our task is to find the
coefficients γi(q), or in practice q!γi(q), which we know to be polynomials in q that may differ
for each residue class of n modulo the period p (Theorem I.4.2). Ehrhart theory says that
the leading coefficient of oP(q;n) is the volume of the polytope [0, 1]2q, i.e., 1; so γ0 = 1/q!
for every piece.

Two nonattacking configurations of labelled pieces are said to have the same combinatorial

type if for each two pieces Pi and Pj and move mk, Pj lies on the same side of the move line
through Pi in the direction of mk in both configurations. That is, (zj − zi) ·m⊥ should have
the same sign in both. (Section I.5 explains more about combinatorial types.) For instance,
the number of combinatorial types of one piece is 1, and the number of types for 2 copies
of a piece with r moves is r. We proved in Theorem I.5.3 that the number of combinatorial
types of nonattacking configuration of q copies of a piece P is uP(q;−1). Table 2.2 shows the
number of combinatorial types for small numbers of partial queens.

3. The Rook and Its Squire
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Name (h, k) q = 2 q = 3 q = 4 q = 5 q = 6 q > 6

Semirook (1, 0) 1 1 1 1 1 1

Rook (2, 0) 2 6 24 120 720 q!

Semibishop (0, 1) 1 1 1 1 1 1

Anassa (1, 1) 2 6 24 120 720 q!

Bishop (0, 2) 2 6 24 120 720 q!

Semiqueen (2, 1) 3 17

Trident (1, 2) 3 17

Queen (2, 2) 4 36 574* 14206* 501552**

Table 2.2. The number of combinatorial types of configuration for nonat-
tacking partial queens Qhk. Values for h + k ≤ 2 are from Theorem I.5.8.
Others are from Table III.4.3.
* is a number inferred from an empirical formula in [12].

** is inferred from the empirical formula of Karavaev; see [11, 12].

3.1. The rook.

Rooks illustrate our approach nicely because they are well understood. The basic move
set, of course, is MR = {(1, 0), (0, 1)}. The well-known elementary formula is

(3.1) uR(q;n) = q!

(
n

q

)2

=
1

q!
(n)2q ,

where (n)q denotes the falling factorial. Thus, oR(q;n) = q!uR(q;n) is a quasipolynomial of
period 1 (that is, a polynomial) and degree 2q, in accordance with our general theory. In
our approach, we want to study its coefficients.

The coefficient of n2q−i is

(3.2) q!γi =

i∑

k=0

s(q, q − k)s(q, q − (i− k)),

where s(q, j) denotes the Stirling number of the first kind, defined as 0 if j < 0 or j > q.
For instance,

q!γ0 = 1, q!γ1 = −(q)2,

q!γ2 = (q)2
3q2 − 5q + 1

6
, q!γ3 = −(q)3

q(q − 1)2

6
.

These formulas, derived from Equation (3.2), agree with the general partial queens formulas
in Theorem III.3.1. (Recall that the rook is the partial queen Q20.)

The sign of each term in the summations in (3.2) is (−1)i, so that is the sign of γi for
0 ≤ i ≤ 2q − 2. For i > 2q − 2, γi = 0 because s(q, 0) = 0. The rook is one of few pieces for
which we know the sign of every term in oP(q;n).
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Proposition 3.1. The coefficient q!γi is a polynomial in q of degree 2i. It has a factor

(q)⌈i/2⌉+1. The coefficient of q2i is

(3.3)
1

(2i)!

i∑

k=0

(
2i

2k

) k∑

r=0

(−1)r
(

2k

k + r

)
S(k + r, r)

i−k∑

s=0

(−1)s
(
2(i− k)

i− k + s

)
S(i− k + s, s),

whose sign is (−1)i.

Proof. Schlömilch’s formula [8, p. 216]

(3.4) s(q, q − k) =

k∑

r=0

(−1)r
(
q − 1 + r

k + r

)(
q + k

k − r

)
S(k + r, r)

(which involves the Stirling numbers S(n, k) of the second kind) tells us that s(q, q− k) is a
polynomial in q of degree 2k with leading term

k∑

r=0

(−1)r
qk+r

(k + r)!

qk−r

(k − r)!
S(k + r, r) =

q2k

(2k)!

k∑

r=0

(−1)r
(

2k

k + r

)
S(k + r, r).

This term, as the leading term, must have the same sign as s(q, q − k) for large q. So the
leading coefficient of q!γi is as in Equation (3.3) and the sign of this coefficient is (−1)i.

It is easy to infer from (3.2) that the polynomial equals 0 if i > 2q − 2, i.e., q ≤ ⌈i/2⌉;
therefore q(q − 1) · · · (q − ⌈i/2⌉) is a factor. �

The number of combinatorial types of nonattacking configuration of q (unlabelled) rooks
is q!. To prove it we may substitute n = −1 into Equation (3.1) (by Theorem I.5.3) or
apply Theorem I.5.8, which says that every piece with two basic moves has q! combinatorial
configuration types.

3.2. The semirook.

The semirook Q10 has only one of the rook’s moves and is consequently the least interesting
of all riders, except that it is the second of the four known pieces with period 1. Also, because
it has no diagonal move, it exemplifies Corollary III.3.2, that partial queens with at most
one diagonal move have a coefficient γ5 that is independent of n. The easy counting formula
is

uQ10(q;n) =

(
n

q

)
nq =

1

q!

q∑

i=0

s(q, q − i)q2q−i,

agreeing with Proposition II.6.1, where one should take (c, d) = (1, 0), and with Tables III.4.1
and III.4.2 for q = 2, 3. The leading coefficients of those polynomials are stated in Theo-
rem III.3.1 and Tables III.3.1 and III.3.2. Schlömilch’s formula (3.4) shows that, as our
theory says, q!γi = s(q, q − i) is a polynomial in q of degree 2i for each i = 1, . . . , q.

4. The Bishop and Its Scion

Here we treat the bishop and its scion the semibishop.
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4.1. The bishop.

The basic move set is MB = {(1, 1), (1,−1)}. The quasipolynomial formulas for up to
6 bishops, published by Kotěšovec in early editions of [12]—most of which were found by
him—are:

(4.1)

uB(1;n) = n2.

uB(2;n) =
n4

2
− 2n3

3
+

n2

2
− n

3
.

uB(3;n) =

{
n6

6
− 2n5

3
+

5n4

4
− 5n3

3
+

4n2

3
− 2n

3
+

1

8

}
− (−1)n

1

8
.

uB(4;n) =

{
n8

24
− n7

3
+

11n6

9
− 29n5

10
+

355n4

72
− 35n3

6
+

337n2

72
− 73n

30
+

1

2

}

− (−1)n
{
n2

8
− n

2
+

1

2

}
.

uB(5;n) =

{
n10

120
− n9

9
+

49n8

72
− 118n7

45
+

523n6

72
− 2731n5

180
+

3413n4

144
− 4853n3

180

+
2599n2

120
− 1321n

120
+

9

4

}
− (−1)n

{
n4

16
− 7n3

12
+

17n2

8
− 85n

24
+

9

4

}
.

uB(6;n) =

{
n12

720
− n11

36
+

37n10

144
− 4813n9

3240
+

8819n8

1440
− 72991n7

3780
+

2873n6

60

−100459n5

1080
+

199519n4

1440
− 498557n3

3240
+

14579n2

120
− 7517n

126
+

765

64

}

− (−1)n
{
n6

48
− n5

3
+

221n4

96
− 211n3

24
+

467n2

24
− 47n

2
+

765

64

}
.

For q ≤ 4 these were rigorously proved by Dudeney and Fabel (see Kotěšovec [12, p. 234]
for these attributions and citations). The formulas for q = 2, 3 are special cases of our The-
orems III.4.1 and III.4.2, thereby reinforcing the correctness of those theorems. Kotěšovec
found the formulas for q = 5, 6 heuristically, by calculating the values uB(q;n) for many
values of n, looking for an empirical recurrence relation, deducing a generating function, and
from that getting the quasipolynomial. (See Section 8.3 for more about his method.) His
approach, while excellent for finding formulas, does not prove their validity because it does
not bound the period—even though period 2 is plausible since one could guess that odd and
even board sizes would have separate polynomials.

We have proved that 2 is the complete story on the period. In Theorem VI.1.1 we provide
the missing upper bound that rigorously establishes period 2 for every q > 2 and hence the
correctness of Kotěšovec’s quasipolynomial formulas.2 Together with the fact that we know
the degree 2q and the leading coefficient 1/q! of the constituent polynomials, this implies
that, if the first 4q values of a candidate quasipolynomial are correct, then we have uB(q;n).
Since Kotěšovec did check those values for q ≤ 6 [13], his formulas are proved.

2Stanley in [16, Solution to Exercise 4.42] says that both quasipolynomiality and the period follow directly
from Arshon’s formulas; however, we believe such a derivation would be difficult.
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Theorem 4.1. All the formulas in Equations (4.1) are correct.

Despite the overall period 2, in Kotěšovec’s formulas (4.1) the six leading coefficients do
not vary with the parity of n. Kotěšovec conjectured expressions for γ1, γ2, and γ3 in terms
of q alone; we proved them in Theorem III.3.1 (and see Tables III.3.1 and III.3.2) since the
bishop is the partial queen Q02. That theorem also gives the periods of γ4 and γ5.

Corollary 4.2 (of Theorem III.3.1). In uB(q;n) the coefficients γi for i ≤ 5 are constant as

functions of n.

As the number of combinatorial types of nonattacking configuration of q unlabelled bishops
is q! by Theorem I.5.8, we know this is the value of uB(q;−1) even though we do not know
the general formula for uB(q;n).

A surprising development during our work on this project was Kotěšovec’s discovery that,
in 1936, Arshon had solved the n-bishops problem, the number of ways to place n nonat-
tacking bishops on an n× n board [1]. His method was to count independently the number
of ways to place i nonattacking bishops on the black squares and on the white squares. This
work was forgotten until Kotěšovec rediscovered it. It was an easy step for him to write
down an explicit formula for the number of placements of q nonattacking bishops [12, fourth
ed., p. 140]. Kotěšovec then restated the Arshon equations with no subtractive terms by
using Stirling numbers of the second kind [12, fourth ed., p. 142]. His formula for q bishops
is
(4.2)

uB(q;n) =

q∑

i=0

⌊

n+1
2

⌋

∑

j=0

(⌊n+1
2
⌋

j

)
S
(
j + ⌊n

2
⌋, n− i

)
·
⌊n
2 ⌋∑

h=0

(⌊n
2
⌋

h

)
S
(
h+ ⌊n+1

2
⌋, n− (q − i)

)
.

For us this is not entirely satisfactory. Since the number of terms depends on n, (4.2) does
not give the quasipolynomial form of uB(q;n) and does not allow us to substitute n = −1
to obtain the number of combinatorial types of nonattacking configuration (though for the
bishop this number is known, obtained from Theorem I.5.8). We consequently take the point
of view that bishops formulas, like those for other pieces, call for a quasipolynomial analysis
via Ehrhart theory, so there is room for further work.

4.2. The semibishop.

We now come to the third piece known to have period 1. The semibishop Q01 has just one
of the bishop’s moves, say (c, d) = (1, 1). Thus, it is an example of a one-move rider (Section
II.6). As such it has counting functions

uQ01(1;n) = n2,

uQ01(2;n) =
1

2
n4 − 1

3
n3 − 1

6
n,

uQ01(3;n) =
1

6
n6 − 1

3
n5 +

1

6
n4 − 1

6
n3 +

1

6
n2,

uQ01(4;n) =
1

24
n8 − 1

6
n7 +

2

9
n6 − 11

60
n5 +

2

9
n4 − 1

6
n3 +

1

72
n2 +

1

60
n,

from Proposition II.6.1 (in which n̄ = 0). All of these are polynomials in n.
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Theorem 4.3. The counting function for nonattacking unlabelled semibishops on the square

board is

uQ01(q;n) = (−1)q
q∑

k=0

s(n+ 1, n+ 1− k)s(n, n− (q − k)),

which is a polynomial function of n of degree 2q.

Proof. This is an immediate consequence of Proposition 4.4 below. Alternatively, it can be
proved similarly to that proposition. �

Explicit formulas for the coefficients γi for i ≤ 3 are in Theorem III.3.1 and Tables III.3.1
and III.3.2.

Kotěšovec independently proposed this same formula in [12, fourth ed., p. 155; sixth ed.,
p. 265] and verified it for n ≤ 20 and some values of q, without a proof.

We prepare for the proof of Theorem 4.3 by changing the board. The right triangle board

(triangular board for short) has legs parallel to the axes and hypotenuse in the direction of
the semibishop’s move; thus, it is the set T := {(x, y) ∈ R2 : 0 ≤ x ≤ y ≤ 1}. The n × n
triangular board is the set of integral points in the interior of the dilation by n+ 2, i.e.,

(n+ 2)T◦ ∩ Z2 = {(x, y) ∈ Z2 : 1 ≤ x ≤ y − 1 ≤ n}.
Write uT

Q01(q;n) for the counting function of nonattacking placements of q unlabelled semibish-
ops on an n × n triangular board. Most of our theory for the square board applies equally
well to the triangular board; we omit details.

Proposition 4.4. The counting function for nonattacking unlabelled semibishops on the

triangular board is uT

Q01(q;n) = (−1)qs(n+ 1, n+ 1− q).

Proposition 4.5. The Stirling number of the first kind, s(n+1, n+ 1− q), is a polynomial

function of n of degree q. The coefficient of n2q−i in q!(−1)qs(n+1, n+1−q) is a polynomial

function of q of degree 2i.

The fact that s(n+1, n+1−q) is a polynomial in n of degree 2q follows from Schlömilch’s
formula (3.4) and is well known (see e.g. [9]). We give a proof here which we believe to be
new, using Ehrhart theory in the spirit of our chess series. We do not know a prior reference
for the fact that the coefficients themselves are polynomials.

Proof. We prove both propositions together.
The n × n integral right triangle board has n diagonals (parallel to the hypotenuse) of

lengths 1, 2, . . . , n, each of which can have at most one semibishop. The number of ways
to place q labelled semibishops is the sum of all products of q of these n values, i.e., the
elementary symmetric function eq(1, 2, . . . , n), which equals |s(n+1, n+1−q)|. That proves
Proposition 4.4.

Next, we prove s(n + 1, n + 1 − q) is a polynomial function of n. Proposition IV.3.1
applies because the semibishop is a one-move rider. The corners of the triangular board T

are (0, 0), (1, 1), and (0, 1). For the move (1, 1), their antipodes are the opposite points of the
boundary along the 45◦ diagonal. The corner (0, 1) has no antipode while the corners (0, 0)
and (1, 1) serve as each other’s antipodes. Thus, every vertex is integral and the denominator
D(Tq,AQ01) = 1, so q!uT

Q01(q;n) is a polynomial in n.
Finally, Theorem I.4.2 says that the coefficients are polynomials in q with the stated

degrees. �
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5. The Queen and Its Less Hardy Sisters

There are four pieces in this section: the queen, and three others that are like defective
queens without being similar to bishops or rooks, which we call the semiqueen, the trident,
and the anassa. As they are all partial queens, counting formulas for q = 2, 3 are special
cases of our Theorems III.4.1 and III.4.2 and are presented in Tables III.4.1 and III.4.2. The
four leading coefficients of the general counting polynomial are implied by Theorems III.3.1,
III.4.2, and III.4.2; see Tables III.3.1 and III.3.2. All our formulas that were also calculated
by Kotěšovec in [12] agree with his.

Let ζr := e2πi/r be a primitive r-th root of unity. We index the Fibonacci numbers Fi so
that F0 = F1 = 1.

5.1. The queen.

The basic move set is MQ = {(1, 0), (0, 1), (1, 1), (1,−1)}. The known quasipolynomial
formulas for up to four queens are:
(5.1)
uQ(1;n) = n2.

uQ(2;n) =
n4

2
− 5n3

3
+

3n2

2
− n

3
=

n(n− 1)(3n2 − 7n+ 2)

6

uQ(3;n) =

{
n6

6
− 5n5

3
+

79n4

12
− 25n3

2
+ 11n2 − 43n

12
+

1

8

}
+ (−1)n

{
n

4
− 1

8

}
.

uQ(4;n) =

{
n8

24
− 5n7

6
+

65n6

9
− 1051n5

30
+

817n4

8
− 19103n3

108
+

3989n2

24
− 18131n

270
+

253

54

}

+ (−1)n
{
n3

4
− 21n2

8
+ 7n− 7

2

}
+ Re(ζn3 )

32(n− 1)

27
+ Im(ζn3 )

40
√
3

81
.

The square and cube roots of unity in uQ(4;n) imply period 6.
The formula for two queens, originally due to Lucas, is given by our Theorem III.4.1. The

formula for three queens, due to Landau, is implied by our Theorem III.4.2. Kotěšovec gives
formulas for up to six queens, calculated by him for q = 4, 5 and calculated for six queens
by Karavaev. ([12] has the citations.) These three have not been not rigorously proved.

Kotěšovec conjectured formulas for γ1 and γ2 based on the known and heuristically derived
formulas (mostly by him) for uQ(q;n) for small q. Theorem III.3.1 proves his conjectures
and also with a formula for γ3, and further proves that γ4 is constant as a function of n, but
that the next two coefficients are not.

Corollary 5.1 (of Theorem III.3.1). In uQ(q;n) the coefficients γi for i ≤ 4 are constant as

functions of n; but γ5 has period 2 if q ≥ 3. Exact formulas are

γ0 =
1

q!
, γ1 = − 1

(q − 2)!

{
5

3

}
,

γ2 =
1

2!(q − 2)!

{
25

9
(q − 2)2 +

61

6
(q − 2) + 3

}
,

γ3 = − 1

3!(q − 2)!

{
125

27
(q − 2)4 +

305

6
(q − 2)3 +

681

5
(q − 2)2 + 73(q − 2) + 2

}
.
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Unlike the case of bishops and semibishops, the period of uQ(q;n) is not simple, although
Kotěšovec [12, 6th ed., p. 31] makes the following remarkable conjecture.

Conjecture 5.2 (Kotěšovec). The counting quasipolynomial for q queens has period lcm[Fq],
the least common multiple of all positive integers up through the q-th Fibonacci number Fq.

The observed periods up to q = 7 (see [12, 6th ed., pp. 19, 27–28] for q = 7) agree with
this proposal, and the theory of Section IV.6 lends credence to its veracity.

Kotěšovec conjectures, yet more strongly, the exact form of the denominator of the gen-
erating function

∑
n≥0 uQ(q;n)x

n: it is a product of specific cyclotomic polynomials raised
to specific powers; see [12, third ed., pp. 11, 14 et seq.], [12, 6th ed., p. 22]. The conjecture
implies that, when written in standard Ehrhart form with denominator (1 − xp)2q+1, the
generating function has many cancellable factors. This, too, is not predicted by Ehrhart
theory; but as it is too systematic and elegant to be accidental, it presents another tantaliz-
ing question. Kotěšovec’s evidence, indeed, suggests that uQ(q;n) has a recurrence relation
of length far less than its period (see Section 8.3). A proof of these conjectures seems to call
for a new theoretical leap forward.

5.2. The semiqueen.

The semiqueen Q21 is the queen without one of its diagonal moves (think of it as having
lost the left or right arm in battle). We gave formulas for q = 2 and 3 in Tables III.4.1
and III.4.2. We also gave formulas for the initial coefficients γ2 and γ3 in Tables III.3.1 and
III.3.2. For higher values of q we refer to Kotěšovec’s heuristic counting formulas for q ≤ 6
in [12, 6th ed., pp. 732–733].

Conjecture IV.5.8 states a conjectural upper bound for the quasipolynomial period of
lcm[Fq/2] when q is even and lcm[F(q+1)/2 − 1] when q is odd. Since we do not expect all
denominators in [Fq/2] or [F(q+1)/2 − 1] to appear, we do not expect this bound to be tight
for large q, although it agrees with Kotěšovec’s formulas for q ≤ 6.

5.3. The trident.

The trident is the partial queen Q12 that can advance and retreat but cannot move
sideways. Our counting formulas for q ≤ 3 in Tables III.4.1 and III.4.2 are the same as
Kotěšovec’s heuristic ones [12, pp. 730–731], thereby confirming his. Tables III.3.1 and
III.3.2 give the values of γ2 and γ3.

Conjecture IV.5.10 implies a conjectural upper bound for the period of the counting
quasipolynomial for q tridents of lcm[2Fq/2 − 1] when q is even and lcm[F(q+3)/2 − 1] when q
is odd. Again, this should not be considered tight. However, Kotěšovec’s heuristic approach
did yield a period of 6 when q = 4, which is our upper bound.

5.4. The anassa.

The anassa (Kotěšovec’s “semi-rook + semi-bishop”) is the partial queen Q11, with one
horizontal or vertical and one diagonal move. It is the fourth and final piece known to have
period 1, i.e., whose counting function uQ11(q;n) is a polynomial for all q.

Kotěšovec noticed in his results that (n)q is a factor of uQ11(q;n) for q up to 8. For instance,

uQ11(6;n) =
(n)6
6!

(
n6 − 10n5 + 45n4 − 1093

9
n3 +

634

3
n2 − 14033

63
n+

2278

21

)
.

We would like an explanation for this.
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Kotěšovec also presents a formula for the number of ways to place n nonattacking anassas
on an n× n board:

uQ11(n;n) =

n∑

k=1

(
n + 1

k

)
k!

2k
S(n, k).

6. Preparation for the Nightrider

6.1. Ehrhart enumeration.

For the nightrider we need more of the technique from Parts I–IV; thus we continue the
exposition from Section 2. The board is the square board [0, 1]2.

The intersection lattice L (AP) is the lattice of all intersections of subsets of AP, ordered
by reverse inclusion. The Möbius function of L (AP) is denoted by µ and the bottom element
is 0̂ = R2q. Each subspace U ∈ L (AP) is the intersection of hyperplanes involving a set

I consisting of κ of the q pieces. The essential part of U is the subspace Ũ of R2κ that
satisfies the same move equations as U. Then α(U;n), defined as the number of integral

points in the dilation of (B◦)κ ∩ Ũ, is independent of q because Ũ depends only on κ. By

Ehrhart theory α(U;n) is a quasipolynomial of degree 2κ− codim Ũ. Since U ∼= R2(q−κ)× Ũ,

codim Ũ = codimU and the number of lattice points in U∩ (0, 1)2q is n2(q−κ)α(U;n). To get
oP(q;n) we use Möbius inversion to combine these numbers:

oP(q;n) =
∑

U∈L (AP)

µ(0̂,U)n2(q−κ) α(U;n).

This is justified by the Ehrhart theory of inside-out polytopes because the nonattacking
configurations are the integral lattice points in (n+1)(0, 1)2q and not in any of the hyperplanes

H
d/c
ij .

In Part II we defined αd/c(n) := α(H
d/c
12 ;n), the number of ordered pairs of positions that

attack each other along slope d/c (they may occupy the same position; that is considered

attacking). Similarly, βd/c(n) := α(H
d/c
12 ∩ H

d/c
13 ;n), the number of ordered triples that are

collinear along slope d/c. Proposition II.3.1 gives general formulas for α and β. We need
only two examples:

(6.1)

α1/2(n) =

{
5
12
n3 + 1

3
n for n even,

5
12
n3 + 7

12
n for n odd

=
5

12
n3 +

11

24
n + (−1)n

{
1

8
n

}
,

β1/2(n) =

{
3
16
n4 + 1

4
n2 for n even,

3
16
n4 + 5

8
n2 + 3

16
for n odd.

=
3

16
n4 +

7

16
n2 +

3

32
− (−1)n

{
3

16
n2 +

3

32

}
.
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6.2. Strong Parity Theorem.

The Parity Theorem (Theorem II.4.1) tells us that α(U;n) is an even or odd function of
n, depending on the codimension of U. What it does not say is how that affects the number
of undetermined coefficients in computing α(U;n), which is, in particular, the number of
values of the function we need to interpolate all the coefficients. In general, an Ehrhart
quasipolynomial of degree d with period p has pd+1 coefficients that have to be computed.
(The leading coefficient is the volume of U ∩ [0, 1]2q for all constituents.) The full theorem,
then, should be this:

Theorem 6.1 (Strong Parity Theorem). For a subspace U ∈ L (AP) whose equations involve
κ pieces, for which α(U;n) has period p, the number of values of α(U;n) that are sufficient

to determine all the coefficients in all constituents is ⌈p(κ− 1
2
codimU)⌉+ ε, where ε = 1 if

codimU is even and 0 if it is odd.

Proof. Let α(n) := α(U;n) and ν := codimU. Thus, α has degree d := 2κ− ν.
Let the constituents of α be α0, α1, . . . , αp−1; that means α(n) = αn mod p(n). We take

subscripts modulo p so that, e.g., α−1 = αp−1. Write αi(n) = adn
d+ai,d−1n

d−1+ · · ·+ai,0n
0.

Since α−i(−n) = (−1)dαi(n) (Corollary II.4.1),

α−i(−n) = adn
d + a−i,d−1n

d−1 + · · ·+ a−i,0n
0 =

(−1)dαi(n) = adn
d(−1)0 + ai,d−1n

d−1(−1)1 + · · ·+ ai,0n
0(−1)d.

Subtracting,
∑d−1

j=0[ai,j(−1)d−j − a−i,j]n
j = 0, which implies that a−i,j = (−1)d−jai,j for

j < d. It follows that only the coefficients for 0 ≤ i ≤ p/2 need to be computed. There are
d⌊(p − 1)/2⌋ coefficients with j < d for 0 < i < p/2. For i = 0, Corollary II.4.1 says that
α0 is an even or odd polynomial (depending on d) and so is αp/2 if the period is even. The
number of coefficients to determine, other than αd, is therefore ⌊d/2⌋ for α0 and the same
for αp/2 if it exists. Summing these up, there are

pd

2
+





1 if d is even,

0 if d is odd and p is even,
1
2

if pd is odd

independent coefficients to be computed in α. �

7. The Nightrider

The basic move set is MN = {(1, 2), (2, 1), (1,−2), (2,−1)}. As always, uN(1;n) = n2. It
is easy to see that uN(2; 1) = 0, uN(2; 2) = 6, uN(2; 3) = 28, and not quite so easy to find
uN(2; 4) = 96 by hand. Many more values of uN(2;n) are in the OEIS (see Table 1.1). In

Theorem II.3.1, all (ĉ, d̂) = (1, 2) and the period is 2, so n̄ := (n mod 2) ∈ {0, 1}. Therefore,

uN(2;n) =

{
n4

2
− 5n3

6
+

3n2

2
− 11n

12

}
+ (−1)n

n

4
.(7.1)

This formula was found independently by Kotěšovec. His [12, 6th ed., p. 312] has an enor-
mous formula for three nightriders (undoubtedly correct, though unproved) that is too com-
plicated to reproduce here. A proof may be accessible using our techniques.
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We summarize the known numerical results for nightriders in Table 7.1. We calculated the
denominator for four nightriders by using Mathematica to find all vertices of the inside-out
polytope and then the least common multiple of their denominators.

Types Period Denom

q = 1 1 1 1

2 4 2 2

3 36* 60* 60

4 — — 14559745200

Table 7.1. The number of combinatorial types of nonattacking placements
of q (unlabelled) nightriders in an n × n square board; also the period and
denominator. Note that 36 matches Conjecture III.4.4.

* is a number derived from an empirical formula in [12].

From Theorem II.3.1 we get a generalization. Define a partial nightrider Nk to have any
k (1 ≤ k ≤ 4) of the complete nightrider’s moves. Up to symmetry there are five partial
nightriders:

The one-move partial nightrider N1 moves along slope 1/2.
In Corollary II.6.1 we found formulas for uN1(q;n) with q ≤ 4. By Theorem IV.3.2,

uN1(q;n) has period 2 for every q ≥ 2.
The lateral nightrider N2

lat moves along slope ±1/2.
The inclined nightrider N2

incl moves along slopes 1/2 and 2.
The orthogonal nightrider N2

orth moves along the orthogonal slopes 1/2 and −2.
The three-move partial nightrider N3 moves along slope ±1/2 and 2.

Corollary 7.1 (of Theorem II.3.1). Let n̄ := n mod 2 ∈ {0, 1}. Then

(7.2)

uNk(2;n) =
1

2
n4 − 5k

24
n3 +

k − 1

2
n2 − k

6
n− kn̄

8
n

=

{
1

2
n4 − 5k

24
n3 +

k − 1

2
n2 − 11k

48
n

}
+ (−1)n

3k

48
n.

Note that all three two-move partial nightriders have the same formula.
A direct consequence of Theorem II.5.1 is that we know the second coefficient of the

counting quasipolynomial of Nk:

(7.3) γ1 = − 5k

24(q − 2)!
.

This formula for N = N4 was conjectured by Kotěšovec. Theorem II.5.1 gives the leading
coefficient of every γi for all partial nightriders.

Theorem 7.2. (I) For a partial nightrider Nk, the coefficient q!γi of n
2q−i in oNk(q;n) is a

polynomial in q, periodic in n, with leading term
[
− 5k

24

]i
q2i

i!
.
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For the next result, computer algebra gave us a general formula for the third coefficient,
γ2. It and the periods of γ3 and γ4 are new. Both agree with Kotěšovec’s data for N (q ≤ 3)
and N1 (q ≤ 8).

Theorem 7.3. The third coefficient of the partial nightrider counting quasipolynomial is

independent of n; it is

γ2 =
1

2!(q − 2)!

{(
5k

24

)2

(q − 2)2 +

(
k

8
+

11λ1

32
+

53λ2

144
+

27λ3

80

)
(q − 2) + (k − 1)

}
.

The next coefficient, γ3, is periodic in n with period 2 and periodic part

(−1)n
1

3!(q − 2)!

{
3k

8

}
.

The coefficient γ4 has period 2 and periodic part

−(−1)n
1

4!(q − 2)!

{
5k2

16
(q − 2)2 +

(
3k

2
+

9λ2

4

)
(q − 2)

}
,

where λ1, λ2, and λ3 depend on the partial nightrider as stated in Table 7.2.

N1 N2
lat N2

incl N2
orth N3 N4

λ1 0 1 0 0 1 2
λ2 0 0 1 0 1 2
λ3 0 0 0 1 1 2

Table 7.2. The values of the λi.

These formulas with k = 1 agree with the ones in Corollary II.6.1, where they were
presented as a simple case of general one-move rider formulas.

Proof. Just as in Theorem III.3.1, we calculate γ2 by determining the contribution from all

subspaces U defined by two move equations, each of the formH
d/c
ij for d/c ∈ {1/2, 2/1,−1/2,−2/1}

and i, j ∈ [q]. This is done in Lemma 7.4.
There is no contribution to γ2 from subspaces of codimension 0 or 1.
The coefficient γ3 may have contributions from subspaces of codimensions 1 to 3. Since

the contribution of a subspace of codimension 3 comes from the leading coefficient, it is in-
dependent of n. We did not compute these leading coefficients. A subspace of codimension 2
contributes zero by Theorem II.4.2, or simply by observing the formula in Equation (II.2.5).
Therefore the periodic part of (q − 2)!γ3 arises solely from α(H1/2;n) = α1/2(n) in Equa-
tion (6.1), which provides a periodic contribution of (−1)n 1

8
n2q−3

(
q
2

)
from each of the k

hyperplanes in ANk .
The calculations for hyperplanes and subspaces of Type U2

3b in Lemma 7.4 imply that γ4
is periodic with period 2 when k ≥ 2. That is because a periodic contribution can come
only from a subspace of codimension 1, 2, or 3. Equation (6.1) shows that hyperplanes make
no contribution to γ4. We can therefore read the periodic contribution of −(−1)n

[
k
16
(q)3 +

λ2
3
32
(q)3 +

5k2

384
(q)4

]
from Lemma 7.4. �
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Lemma 7.4. The total contribution to oNk(q;n) of all subspaces with codimension 2 is
{[

k − 1

2
(q)2 +

k

16
(q)3 +

(
λ1

11

64
+ λ2

53

288
+ λ3

27

160

)
(q)3 +

25k2

1152
(q)4

]
n2q−2

+

[
7k

48
(q)3 +

(
λ1

k

4
+ λ2

83

288
+ λ3

1

4

)
(q)3 +

55k2

1152
(q)4

]
n2q−4

+

[
1

32
(q)3 +

65

144
(q)4

]
n2q−6

}

− (−1)n
{[

k

16
(q)3 + λ2

3

32
(q)3 +

5k2

384
(q)4

]
n2q−4 +

[
k

32
(q)3 +

11k2

768
(q)4

]
n2q−6

}

+

[
λ1

(
51

256
− 19

256
ζn4 − 13

256
ζ2n4 − 19

256
ζ3n4

)

+ λ2

(
527

1728
− 1

8
ζ3n12 +

2

27
ζ4n12 − 13

64
ζ6n12 +

2

27
ζ8n12 − 1

8
ζ9n12

)

+ λ3

(
599

1600
− 4

25
ζ4n20 +

1

8
ζ5n20 − 4

25
ζ8n20 +

1

64
ζ10n20 − 4

25
ζ12n20 +

1

8
ζ15n20 − 4

25
ζ16n20

)]
(q)3 n

2q−6,

where λ1, λ2, and λ3 are as in Table 7.2.

The symmetry in the coefficients of powers of each ζr in the last n2q−6-term is due to the
coefficients’ being real numbers.

Proof. There are four types of subspace, of which only Type U2
3b involves calculations that

are substantially different from those in Lemma III.3.4. That is where the λi arise.
From Section 6, for a subspace determined by equations involving κ pieces, α(U;n) is a

quasipolynomial of degree 2κ− codimU.

Type U
2
2 : The subspace U is defined by two move equations involving the same two

pieces. There is one such subspace for each of the
(
q
2

)
unordered pairs of pieces and

n2 ways to place the attacking pieces in U. Since U lies in k hyperplanes, the Möbius
function is µ(0̂,U) = k − 1. The contribution to oNk(q;n) is k−1

2
(q)2n

2q−2 so the

contribution to q!γ2 is k−1
2
(q)2.

The one-move partial nightrider is an exception, since there is no subspace of
this type when k = 1. Then instead of multiplying the contribution by µ(0̂,U), we
multiply it by 0 = k − 1; i.e., the same multiplier expression.

Type U2
3a : The subspace U is defined by two move equations of the same slope in-

volving three pieces. There is one subspace of this type for each of the k slopes.
The number of points in each subspace is β1/2(n) from Equation (6.1). There are
(q)3/3! ways to choose three partial nightriders, and the Möbius function is 2. Thus
we multiply β1/2(n) by 2k

3!
(q)3n

2q−6 to find that the contribution to oNk(q;n) is

(q)3

{
k

16
n2q−2 +

7k

48
n2q−4 +

k

32
n2q−6 − (−1)n

[ k

16
n2q−4 +

k

32
n2q−6

]}
,

so that the contribution to q!γ2 is k
16
(q)3 and that to q!γ4 is

[
7k
48

− (−1)n k
16

]
(q)3.
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Type U2
3b : The subspace U is defined by two move equations of different slopes in-

volving three pieces, say U = H
d/c
12 ∩ H

d′/c′

23 . By symmetry it suffices to find the
contributions when d/c = 1/2 and d′/c′ ∈ {2/1,−2/1,−1/2}. The total contribution
will depend on the piece’s basic move set. We write U = U

d′/c′ when we need to
mention the slope. The Möbius function is µ(0̂,U) = 1.
We choose the piece P2 in q ways, P1 in q − 1 ways, and P3 in q − 2 ways.
For each value of d′/c′ we calculated the denominators of all vertex coordinates of

[0, 1]2q ∩ U using Mathematica. That gave us the denominator D([0, 1]2q ∩ U) and
hence an upper bound on the period of α(U;n) in each case. Using Mathematica
again we found quasipolynomial formulas for the number of placements of the three
nightriders, α(U;n). These formulas were calculated by varying the position of P2 in
the n× n grid as n varied in a residue class modulo D([0, 1]2q ∩U). The calculations
were carried out for n = 1, . . . , 100, which covers at least five periods in every case.
By Theorem 6.1 and the fact that α(U;n) has degree 4 = 2 · 3 − codimU, there
are 2p + 1 coefficients to determine in α(U;n); as the periods are bounded by 20
in every case, that is enough data to infer them all with redundancy. (We found
that the period of every one of these quasipolynomials equals the denominator of the
subspace, which tends to support Conjecture 2.)
Case d′/c′ = −1/2. The vertex denominators here are 2 and 4 soD([0, 1]2q∩U) = 4.

The number of placements is

α(U−1/2;n) =





11
64
n4 + 1

4
n2 for n ≡ 0 mod 4,

11
64
n4 + 1

4
n2 + 1

4
for n ≡ 2 mod 4,

11
64
n4 + 1

4
n2 + 19

64
for n odd.

Case d′/c′ = 2/1. The vertex denominators here are 2, 3, 4 so D([0, 1]2q ∩ U) =
lcm(2, 3, 4) = 12. The number of placements is

α(U1/2;n) =






53
288

n4 + 7
36
n2 for n ≡ 0 mod 12,

53
288

n4 + 7
36
n2 − 2

9
for n ≡ ±4 mod 12,

53
288

n4 + 7
36
n2 + 1

2
for n ≡ 6 mod 12,

53
288

n4 + 7
36
n2 + 5

18
for n ≡ ±2 mod 12,

53
288

n4 + 55
144

n2 + 21
32

for n ≡ 3 mod 6,

53
288

n4 + 55
144

n2 + 125
288

for n ≡ ±1 mod 6.

Note that the coefficient of n2, which becomes a contribution to γ4, has period 2.
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Case d′/c′ = −2/1. The vertex coordinate denominators here are 2, 4, and 5 so
D([0, 1]2q ∩ U) = 20. The number of placements is

α(U−2/1;n) =





27
160

n4 + 1
4
n2 for n ≡ 0 mod 20,

27
160

n4 + 1
4
n2 + 4

5
for n ≡ ±4,±8 mod 20,

27
160

n4 + 1
4
n2 − 1

2
for n ≡ 10 mod 20,

27
160

n4 + 1
4
n2 + 3

10
for n ≡ ±2,±6 mod 20,

27
160

n4 + 1
4
n2 − 9

32
for n ≡ ±5 mod 20,

27
160

n4 + 1
4
n2 + 83

160
for odd n 6≡ ±5 mod 20.

For the complete nightrider, the
(
4
2

)
choices of pairs of slopes consist of two copies

of each case. For the three-move partial nightrider, the three choices of pairs of slopes
consist of one copy of each case. And for the two-move partial nightriders, there is
only the one case corresponding to its pair of slopes. These conditions are encoded
by the coefficients λi. Therefore the contribution to oNk(q;n) is (q)3 times

λ1

{
11

64
n2q−2 +

1

4
n2q−4 +

(
51

256
− 19

256
ζn4 − 13

256
ζ2n4 − 19

256
ζ3n4

)
n2q−6

}

+ λ2

{
53

288
n2q−2 +

(
83

288
− (−1)n

3

32

)
n2q−4

+

(
527

1728
− 1

8
ζ3n12 +

2

27
ζ4n12 − 13

64
ζ6n12 +

2

27
ζ8n12 − 1

8
ζ9n12

)
n2q−6

}

+ λ3

{
27

160
n2q−2 +

1

4
n2q−4

+

(
599

1600
− 4

25
ζ4n20 +

1

8
ζ5n20 − 4

25
ζ8n20 +

1

64
ζ10n20 − 4

25
ζ12n20 +

1

8
ζ15n20 − 4

25
ζ16n20

)
n2q−6

}

Type U2
4∗ :U

1
2U

1
2 : The subspace U is defined by two move equations involving four

distinct pieces. For every pair of hyperplanes, the number of attacking configura-

tions is
(
α1/2(n)

)2
, whose value is given in Equation (6.1). We must also multiply

by the number of ways in which we can choose this pair of hyperplanes, which is

k (q)4
8

+
(
k
2

) (q)4
4

= k2

8
(q)4. The Möbius function is 1. We conclude that the contribu-

tion to oN(q;n) is

(q)4

{
25k2

1152
n2q−2 +

55k2

1152
n2q−4 +

65k2

2304
n2q−6 − (−1)n

[
5k2

384
n2q−4 +

11k2

768
n2q−6

]}
,

that to γ2 is 25k2

1152
(q)4, and that to γ4 is

(
55k2

1152
− (−1)n 5k2

384

)
(q)4.

�

Curiously, not only is the quasipolynomial for every subspace as a whole an even function,
so is each constituent; equivalently, opposite constituents αi(U;n) and α−i(U;n) are equal,
for every i. We do not know why.
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Type U2
3b contributes period 60 = lcm(12, 20, 4) to γ6 for the complete nightrider and the

three-move partial nightrider, as one can see from Lemma 7.4. We therefore expect γ6 to
have period that is a multiple of 60 for those pieces; however, we are far from proving this.

This computational method can be applied to larger numbers of any piece, limited only
by human effort and computing power. It should be feasible to deduce, at the least, partial
nightrider formulas for γ3, γ4, and uNk(3;n).

8. Conclusions, Conjectures, Extensions

Work on nonattacking chess placements raises many questions, some of which have general
interest.

8.1. Simplified riders.

We cannot reach satisfactorily strong conclusions about the queen and nightrider in part
because their periods grow too rapidly as q increases, which we now understand by way of the
twisted Fibonacci spirals in Section IV.6. It would be desirable to study simplified analogs,
hoping not only for hints to solve those pieces but to find general patterns in the period and
coefficients. As having four move directions is complicated, we propose handicapping the
pieces by eliminating some of their moves.

As we saw in Part III, partial queens Qhk are approachable because the queen’s moves are
individually simple. We suggest further study of the following variants, some of which have
been investigated by Kotěšovec.

(a) A generalization of the anassa is a rider with two moves, (1, 0) and (c, d). The denomi-
nator of this piece was determined in Proposition IV.4.2. This piece, and especially its
period, would facilitate analysis of the effect of non-unit slopes.

The nightrider’s main complication comes from the non-unit slopes. We propose as worthy
subjects the partial nightriders with only two moves, from Section 7:

(b) The lateral nightrider. We conjecture a period of 4 for q ≥ 3. We verified this for
q = 3, 4.

(c) The inclined nightrider. The period for q = 3 is 12.
(d) The orthogonal nightrider. The period for q = 3 is 20.

We thank Arvind Mahankali for calculating these periods, using Mathematica. Note that
the coefficient of n2q−6 in Lemma 7.4 strongly suggests but does not prove these periods.

After we proposed these pieces, Hanusa and Mahankali [10] found their denominators,
which we reproduce in Table 8.1. As upper bounds on periods, they also suggest but do not
prove the true periods.

Name q = 1 q = 2 q = 3 q ≥ 4

Lateral 1 2 4 4
Inclined 1 2 12 = 3 · 2q−1 3 · 2q−1

Orthogonal 1 2 20 = 5 · 2q−1 15 · 2q−1

Table 8.1. The denominators of the two-move partial nightriders, from [10,
Section 6].

(e) A simple three-move rider would have moves (1, 0), (0, 1), (c, d). This should be investi-
gated.
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(f) The partial nightrider N3. We discussed it briefly in Section 7, finding the counting
formula and the period 2 for q = 2. The period for three pieces appears to be 60. This
period is the same as for the complete nightrider but we expect N3 to have a smaller
period than N when q ≥ 4.

8.2. Counting nonattacking combinatorial types.

It would be valuable to produce a conjectural expression for the number of combinatorial
types of nonattacking configuration for the queen, a partial queen with three moves, or any
other piece with more than two moves (one or two moves being easy; see Proposition I.5.6).

8.3. The problem of the recurrence relation.

Suppose we generate a sequence of numbers, say u1, u2, . . ., one at a time. Each time
we generate a new un we look for a linear, homogeneous recurrence relation with constant
coefficients that u1, u2, . . . , un satisfy. The recurrence may change at each n, but suppose
there is an N such that the (N + k)-th recurrence is identical to the N -th recurrence for
k = 1, 2, . . . , K. Let us call this a stable recurrence of strength K. If the stable recurrence
is valid for all n > N , it is the true recurrence satisfied by the sequence.

Kotěšovec’s method of finding formulas for a rider P and a number q was to compute
un = uP(q;n) until he detected a stable recurrence of sufficient strength. Then he assumed
the stable recurrence was the true recurrence and used it to obtain a rational generating
function for uP(q;n), from which he could obtain a quasipolynomial formula. (Personal
communication, 19 July 2018.) His stable relation is the true relation in all cases that we
could verify. The first question is: Why?

We know there is a recurrence for uP(q;n), because that is implied by the quasipolynomial
formula. What we do not know is whether there is an N at which a stable recurrence appears
which is not the true recurrence. That means the N -th through (N +K)-th recurrences are
the same, for some positive K, but the (N +K+1)-st recurrence is not. We conjecture that
this cannot happen for (a) some knowable value of K; (b) K = 1.

Conjecture 8.1. (a) For any rider P and fixed q > 0, the sequence uP(q;n) satisfies a
recurrence relation which is the first stable relation of sufficient strength found as the numbers
uP(q;n) are generated.

(b) The first repeated relation is the true relation.

As we mentioned in Section 5.1, the recurrences found by Kotěšovec are much shorter than
the quasipolynomial period. That cannot be an accident! It leads to the second important
problem about recurrences.

Conjecture 8.2. All sequences {uP(q;n)}n satisfy recurrences that are much shorter than
the period of the quasipolynomial.

Supposing they do, we ask how much shorter, and why? It is due to factors cancelling in
the Ehrhart rational generating function, whose denominator is (1 − tp)2q+1. Which factors
cancel, and why do they exist in the numerator?

A simple example: The Ehrhart denominator for q bishops is (1− t2)2q+1; but Kotěšovec
finds that it cancels down to (1− t2)2q−5(1 + t)6 [12, p. 239].
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Dictionary of Notation

(c, d) – coordinates of move vector (p. 4)
d/c – slope of line or move (p. 4)
Fq – Fibonacci numbers (p. 11)
h – # of horizontal, vertical moves of partial queen (p. 4)
k – # of diagonal moves of partial queen (p. 4)
k – # of moves of partial nightrider (p. 15)
m = (c, d) – basic move (p. 4)
m⊥ = (d,−c) – orthogonal vector to move m (p. 4)
n – size of square board (p. 2)
oP(q;n) – # of nonattacking labelled configurations (p. 5)
p – period of quasipolynomial (p. 2)
q – # of pieces on a board (p. 2)
s(n, k) – Stirling number of the first kind (p. 6)
S(n, k) – Stirling number of the second kind (p. 7)
uP(q;n) – # of nonattacking unlabelled configurations (p. 2)
z = (x, y), zi = (xi, yi) – piece position (p. 4)
z = (z1, . . . , zq) – configuration (p. 4)

α(U;n) – # of attacking configurations in essential part of subspace U (p. 13)
αd/c(n) – # of 2-piece attacks on slope d/c (p. 13)
βd/c(n) – # of 3-piece attacks on slope d/c (p. 13)
γi – coefficient of n2q−i in uP (p. 2)
ζr = e2πi/r – primitive r-th root of unity (p. 11)
κ – # of of pieces in equations of U (p. 13)
λ1, λ3, λ2 – coefficients for partial queens Nk (p. 16)
µ – Möbius function of intersection lattice (p. 13)

D – denominator of inside-out polytope (p. 4)

M – set of basic moves (p. 4)

AP – move arrangement of piece P (p. 4)
B – closed board: usually the square [0, 1]2 (p. 4)

H
d/c
ij – hyperplane for move (c, d) (p. 4)

L (AP) – intersection lattice (p. 13)
[0, 1]2q, (0, 1)2q – closed, open unit hypercube (p. 4)
([0, 1]2q,AP) – inside-out polytope (p. 4)
T – triangular board, 0 ≤ x ≤ y ≤ 1 (p. 10
U – subspace in intersection lattice (p. 13)

Ũ – essential part of subspace U (p. 13)

0̂ = R2q – bottom element of intersection lattice (p. 13)

R – real numbers
R2q – configuration space (p. 4)
Z – integers

B – bishop (p. 7)
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N – nightrider (p. 14)
Nk – partial nightrider (p. 15)
P – piece (p. 2)
Q – queen (p. 11)
Qhk – partial queen (p. 4)
R – rook (p. 5)
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