Applications of abacus diagrams: Simultaneous core partitions, alcoves, and a major statistic

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant Jones, James Madison University and Drew Armstrong, University of Miami people.qc.cuny.edu/chanusa $>$ Talks

Partitions

The Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i. (James, Kerber) Create an abacus diagram from the boundary of λ.
Abacus: Function $a: \mathbb{Z} \rightarrow\{\bullet\lrcorner$,$\} .$ (Equivalence class...)
Partitions correspond to abacus diagrams.
$-9)-7$
(-6) (-5) -4 - -2 -1 0
12
2 (3)
4 (5) (6) 7
$7 \quad 8 \quad 9$

Partition

Self-conjugate partition

Self-conjugate partitions correspond to anti-symmetric abaci.
(-8) (-7)
(-6) -5
(-4)
$\begin{array}{lll}-3 & -2 & -1\end{array}$ \qquad
1
2
5
6)
7
8
8

Core partitions

The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box λ is a t-core if no boxes have hook length $t \longleftrightarrow t$-flush abacus

t-core partition

10	(6)	5	2	1
7	3	2		
6	2	1		
3				
2				
1				

t-flush abacus (in runners)
(-5) (-4) (-3) (-2) (-1) 0 (1) (2) (3) 4 5 (6) (7) 8 9 (10) 111213

Normalized
(-7) -6) -5 -4
(-3) -2) -1 (0)
(1) (2) 34
(5) (6) 78
(9) $10 \quad 11 \quad 12$

Balanced

Self-conj. t-core partition

13	9	7	5			2	1
9	5	3	1				
7	3	1					
5	1						
3							
2							
1							

t-flush antisymmetric abacus

Antisymmetry about $t / t+1$.

Simultaneity

Of interest: Partitions that are both s-core and t-core. $(s, t)=1$

- Abaci that are both s-flush and t-flush.

There are infinitely many (self-conjugate) t-core partitions.
(s, t)-core partitions

(Anderson, 2002):
\# (s, t)-core partitions

$$
\frac{1}{s+t}\binom{s+t}{s}
$$

Self-conj. (s, t)-core partitions

9	6	4	2	1
6	3	1		
4	1			
2				
1				

(Ford, Mai, Sze, 2009):
\# self-conj. (s, t)-core partitions $\binom{s^{\prime}+t^{\prime}}{s^{\prime}}$
where $s^{\prime}=\left\lfloor\frac{s}{2}\right\rfloor$ and $t^{\prime}=\left\lfloor\frac{t}{2}\right\rfloor$

Core partitions in the literature

Representation Theory:

t-cores label t-blocks of irreducible modular representations for S_{n}.
Nakayama cnj. Brauer-Robinson '47 s -c t-cores arise in rep. thy. of A_{n}.

- Readable survey by Kleshchev '10.

Numerical properties:

$c_{t}(n)=\#$ of t-core partitions of n.

$$
\sum_{n \geq 0} c_{t}(n) q^{n}=\prod_{n \geq 1} \frac{\left(1-q^{n t}\right)^{t}}{1-q^{n}}
$$

(\uparrow Olsson '76) (\downarrow Granville-Ono '96)
Positivity. $c_{t}(n)>0(t \geq 4)$.
Monotonicity? $c_{t+1}(n) \geq c_{t}(n)$

Modular forms:

G.f. for t-cores related to Dedekind's η-function, a mod. form of wt. 1/2. Coxeter groups: (\downarrow Lascoux '01) $t+1$-cores \longleftrightarrow coset reps in $\widetilde{A}_{t} / A_{t}$ - Keys: Bruhat order, Group action!

s-c t-cores \longleftrightarrow coset reps in $\widetilde{C}_{t} / C_{t}$ One interpretation: Alcove geometry

Alcove Geometry

Type A_{t} : generators $\left\{s_{1}, \ldots, s_{t}\right\}$ Group of permutations of $\{1, \ldots, t+1\}$. Symmetries of regular simplex, dim. t . Add one affine reflection s_{0} to tile \mathbb{R}^{t}. Dom. alcoves correspond to $t+1$-cores. Overlay the m-Shi arrangement. Which are representative alcoves?

Type C_{2} alcoves

Type C_{t} : generators $\left\{s_{1}, \ldots, s_{t}\right\}$
Group of signed permutations of $\{1, \ldots, t\}$. Symmetries of cube or octa', dim. t. Add one affine reflection s_{0} to tile \mathbb{R}^{t}. Dom. alcoves correspond to s.c. $2 t$-cores. Overlay the m-Shi arrangement. Which are representative alcoves?

Alcoves and simultaneous cores

- For all dominant regions in m-Shi arrangement, the closest alcove to the origin is called m-minimal.
- For all bounded dominant regions in m-Shi arrangement, the furthest alcove from the origin is called m-bounded.

Theorem. (Fishel, Vazirani, '09-'10)
A_{t} alcove is m-minimal \longleftrightarrow corresp. partition is $(t, t m+1)$-core.
A_{t} alcove is m-bounded \longleftrightarrow corresp. partition is $(t, t m-1)$-core.
Theorem. (Armstrong, Hanusa, Jones, '13)
C_{t} alcove is m-minimal \longleftrightarrow self-conjugate $(2 t, 2 t m+1)$-core.
C_{t} alcove is m-bounded \longleftrightarrow self-conjugate $(2 t, 2 t m-1)$-core.
\star Representative alcoves correspond to simultaneous cores.

The 2-minimal A_{2} alcoves

Abaci to the rescue!

Proof sketch:

- m-minimal means that when it is reflected closer to to the origin, it must pass a hyperplane in the m-Shi arrangement.
- The equivalent abacus interpretation is that defining bead b_{i+1} is no more than m levels lower than b_{i}.
- Type A: So this t-flush abacus is also $(t m+1)$-flush. Type C: So this anti-symm. $2 t$-flush abacus is also ($2 t m+1$)-flush.
- A_{t} alcove is m-minimal $\longleftrightarrow(t, t m+1)$-core. C_{t} alcove is m-minimal \longleftrightarrow self-conj. $(2 t, 2 t m+1)$-core.

Numerical corollary:
Agrees with (Athanasiadis, 2004).

- dominant A_{t} regions $\longleftrightarrow(t, t m+1)$-cores. $\frac{1}{t+t m+1}\binom{t+t m+1}{t}$ dominant C_{t} regions \longleftrightarrow s-c. $(2 t, 2 t m+1)$-cores. $\binom{t+t m}{t}$

Abaci to the rescue!

Proof sketch:

- m-bounded means that when it is reflected further from the origin, it must pass a hyperplane in the m-Shi arrangement.
- The equivalent abacus interpretation is that defining bead b_{i+1} is no more than m levels higher than b_{i}.
- Type A: So this t-flush abacus is also ($t m-1$)-flush. Type C: So this anti-symm. $2 t$-flush abacus is also ($2 t m-1$)-flush.
- A_{t} alcove is m-bounded $\longleftrightarrow(t, t m-1)$-core. C_{t} alcove is m-bounded $\longleftrightarrow \mathrm{s}$-c. $(2 t, 2 t m-1)$-core.

Numerical corollary:
Agrees with (Athanasiadis, 2004).

- dom. bdd. A_{t} regions $\longleftrightarrow(t, t-1)$-cores. $\frac{1}{t+t m-1}\binom{t+t m-1}{t}$ dom. bdd. C_{t} regions \longleftrightarrow s-c. $(2 t, 2 t m-1)$-cores. $\quad\binom{t+t m-1}{t}$

Catalan numbers

Specializing the results of Anderson and Ford, Mai, and Sze,

$$
\begin{gathered}
\#(t, t+1) \text {-cores } \\
\frac{1}{2 t+1}\binom{2 t+1}{t}=\frac{1}{t+1}\binom{2 t}{t}
\end{gathered}
$$

A Catalan number! (of type A)

$$
\begin{gathered}
\text { \# self-conj. }(2 t, 2 t+1) \text {-cores } \\
\binom{2 t}{t}
\end{gathered}
$$

A Catalan number of type C

Question: Is there a simple statistic on simultaneous core partitions that gives us a q-analog of the Catalan numbers?

$$
\sum_{\substack{\lambda \text { is } \\
(t, t+1) \text {-core }}} q^{\operatorname{stat}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q}
$$

$$
\sum_{\substack{\lambda \text { is a self-conj. } \\
(2 t, 2 t+1) \text {-core }}} q^{\text {stat }(\lambda)}=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q^{2}}
$$

Answer: Yes. We will create an analog of the major statistic.

The major statistic

Given a permutation π of $\{1, \ldots, n\}$ written in one-line notation as $\pi=\pi_{1} \pi_{2} \cdots \pi_{n}$, the major statistic maj (π) is defined as the sum of the positions of the descents of π, in other words,

$$
\operatorname{maj}(\pi)=\sum_{i: \pi_{i-1}>\pi_{i}} i
$$

Named in honor of Major Percy MacMahon who showed it has the same distribution as the statistic of the number of inversions:

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\operatorname{inv}(\pi)}
$$

A major statistic for simultaneous cores

Let λ be a $(t, t+1)$-core.
Define $b=\left(b_{0}, \ldots, b_{t-1}\right)$
where $b_{i}=\# 1^{\text {st }}$ col. boxes with hook length $\equiv i \bmod t$.
Define

$$
\operatorname{maj}(\lambda)=\sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}\right) .
$$

Theorem. (AHJ '13)
$\sum_{\lambda \text { is }{ }^{2}} q^{\operatorname{maj}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}2 t \\ t\end{array}\right]_{q}$
$(t, t+1)$-core
Note: maj defined as a sum over descents in a sequence.

Let λ be a s-c. $(2 t, 2 t+1)$-core.
Define $b=\left(b_{0}, \ldots, b_{t}\right)$
where $b_{0}=0$ and $b_{i}=$ (\# diag. arms $\equiv i \bmod 2 t$) $(\#$ diag. arms $\equiv 2 t-i+1 \bmod 2 t)$ Define

$$
\operatorname{maj}(\lambda)=2 \sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}-1\right)
$$

Theorem. (AHJ '13)
$\sum_{\lambda \text { is a self-conj. }} q^{\operatorname{maj}(\lambda)}=\left[\begin{array}{c}2 t \\ t\end{array}\right]_{q^{2}}$ $(2 t, 2 t+1)$-core

A major statistic for abacus diagrams

Let λ be a $(t, t+1)$-core.
Read off the levels of the defining beads of the (normalized) abacus to give $b=\left(b_{0}, \ldots, b_{t-1}\right)$.

Define

$$
\operatorname{maj}(\lambda)=\sum_{i: b_{i-1}>b_{i}}\left(2 i-b_{i}\right)
$$

Then

$$
\sum_{\substack{\lambda \text { is a } \\
(t, t+1) \text {-core }}} q^{\operatorname{maj}(\lambda)}=\frac{1}{[t+1]_{q}}\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q}
$$

Let λ be a s-c. $(2 t, 2 t+1)$-core.
Read off the levels of the defining beads of the corresponding abacus to give $b=\left(b_{0}, \ldots, b_{t}\right)$.

Define

$$
\operatorname{maj}(\lambda)=2 \sum_{i: b_{i-1} \geq b_{i}}\left(2 i-b_{i}-1\right)
$$

Then

$$
\sum_{\substack{\lambda \text { is a self-conj. } \\
(2 t, 2 t+1) \text {-core }}} q^{\operatorname{maj}(\lambda)}=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]_{q^{2}}
$$

Proof sketch

- Use Anderson's lattice path bijection:
(s, t)-flush abaci $\longleftrightarrow L:(0,0) \rightarrow(s, t)$ above $y=\frac{t}{s} x$.

-4	-3	-2	-1
0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

35	31	27	23	19	15	11	7	3	-1	-5	-9	-13
22	18	14	10	6	2	-2	-6	-10	-14	-18	-22	-26
9	5	1	-3	-7	-11	-15	-19	-23	-27	-31	-35	-39
-4	-8	-12	-16	-20	-24	-28	-32	-36	-40	-44	-48	-52

- Create a similar lattice path bijection: (improves Ford-Mai-Sze) antisymm. (s, t)-flush abaci $\longleftrightarrow L:(0,0) \rightarrow\left(\left\lfloor\frac{s}{2}\right\rfloor,\left\lfloor\frac{t}{2}\right\rfloor\right)$.

-23	-22	-21	-20	-19	-18	-17	-16
-15	-14	-13	-12	-11	-10	-9	$(-8$
-7	-6	-5	-4	-3	-2	-1	0
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	$(16$
17	18	19	20	21	22	23	24

94	86	78	70	62	54	46	38	30	22	14	6	-2
81	73	65	57	49	41	33	25	17	9	1	-7	-15
68	60	52	44	36	28	20	12	4	-4	-12	-20	-28
55	47	39	31	23	15	7	-1	-9	-17	-25	-33	-41
42	34	26	18	10	2	-6	-14	-22	-30	-38	-46	-54
29	21	13	5	-3	-11	-19	-27	-35	-43	-51	-59	-67
16	8	0	-8	-16	-24	-32	-40	-48	-56	-64	-72	-80
3	-5	-13	-21	-29	-37	-45	-53	-61	-69	-77	-85	-93

Proof sketch

- ($t, t+1$)-flush abaci $\longleftrightarrow L:(0,0) \rightarrow(t, t)$ above $y=x$.

Dyck paths!

5	2	-1
1	-2	-5
-3	-6	-9

5	2	-1
1	-2	-5
-3	-6	-9

5	2	-1
1	-2	-5
-3	-6	-9

5	2	-1
1	-2	-5
-3	-6	-9

5	2	-1
1	-2	-5
-3	-6	-9

- antisymm. $(2 t, 2 t+1$)-flush abaci $\longleftrightarrow L:(0,0) \rightarrow(t, t)$.

- Use the major index on lattice paths that is known to give the desired q-analog:

$$
\begin{aligned}
& \text { nalog: } \operatorname{maj}(L)=\sum_{i:\left(L_{i}, L_{i+1}\right)=(E, N)} i \\
& q^{0}+q^{2}+q^{3}+q^{4}+q^{2+4}=\frac{1}{[4]_{q}}\left[\begin{array}{l}
6 \\
3
\end{array}\right]_{q} \\
& q^{0}+q^{1}+q^{2}+q^{2}+q^{3}+q^{1+3}=\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{q}
\end{aligned}
$$

- Translate this major index to language of abaci and cores.

Talk Recap

- Definitions
- Core partitions and abacus diagrams
- Simultaneity
- Alcove geometry
- Which alcoves are good representatives?
- Simultaneous core partitions!
- Search for q-analogs of Catalan numbers
- Piggy-back on lattice path combinatorics
- A new major statistic on simultaneous cores.
- Remarkable
- Type-independent setup.
- Abaci are the right tool.

What's next?

1. Core survey

- Compile combinatorial interpretations into illustrated dictionary.
- Reconcile many appearances of cores into historical survey.
- Gathering sources stage - What do you know?

2. Open question: Catalan q-analogs

- Question. Is there a core statistic for m-Catalan $(t, t m \pm 1)$?
- Progress: m-Catalan number C_{3} through $(3,3 m+1)$-cores.

3. Open question: Properties of simultaneous cores

- Question. What is the average size of an (s, t)-core partition?
- Progress: Answer: $(s+t+1)(s-1)(t-1) / 24$. Proof?

4. Open question: Cyclic sieving phenomenon

- Note: $\left.\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a\end{array}\right]_{q}\right|_{q=-1}=\binom{\left\lfloor\frac{a}{2}\right\rfloor+\left\lfloor\frac{b}{2}\right\rfloor}{\left\lfloor\frac{2}{2}\right\rfloor}$.

Thank you!

Slides available: people.qc.cuny.edu/chanusa $>$ Talks
Interact: people.qc.cuny.edu/chanusa > Animations

- Drew Armstrong, Christopher R. H. Hanusa, Brant C. Jones. Results and conjectures on simultaneous core partitions. Submitted, 2013. arXiv:1308.0572.

R Christopher R. H. Hanusa and Brant C. Jones. Abacus models for parabolic quotients of affine Coxeter groups Journal of Algebra. Vol. 361, 134-162. (2012) arXiv:1105.5333
© Gordon James and Adalbert Kerber.
The representation theory of the symmetric group. Addison-Wesley, 1981.

