Combinatorial interpretations

in affine Coxeter groups of types B, C, and D

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant C. Jones, James Madison University
people.qc.cuny.edu/chanusa > Talks

What is a Coxeter group?

A Coxeter group is a group with

- Generators: $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- Relations: $s_{i}^{2}=1, \quad\left(s_{i} s_{j}\right)^{m_{i j}}=1$ where $m_{i j} \geq 2$ or $=\infty$
- $m_{i j}=2:\left(s_{i} s_{j}\right)\left(s_{i} s_{j}\right)=1 \longrightarrow s_{i} s_{j}=s_{j} s_{i}$ (they commute)
- $m_{i j}=3:\left(s_{i} s_{j}\right)\left(s_{i} s_{j}\right)\left(s_{i} s_{j}\right)=1 \rightarrow s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ (braid relation)
- $m_{i j}=\infty: s_{i}$ and s_{j} are not related.

Why Coxeter groups?

- They're awesome.
- Discrete Geometry: Symmetries of regular polyhedra.
- Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)
- Geometry: Classification of Lie groups and Lie algebras

Examples of Coxeter groups

(Finite) n-Permutations $S_{n}\left(A_{n-1}\right)$
123
213

- Generators $\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ are:

231
321
123
132
Adjacent transpositions: $s_{i}: i \leftrightarrow i+1$ 312
321

- Only consecutive generators don't commute: $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
- See visually with a Coxeter graph:

Affine n-Permutations $\widetilde{S}_{n}\left(\widetilde{A}_{n-1}\right)$

- Generators: $\left\{\mathrm{s}_{0}, s_{1}, \ldots, s_{n-1}\right\}$
- S_{n} is a parabolic subgroup of \widetilde{S}_{n}

Minimal length coset representatives

For a Coxeter group \widetilde{W} generated by $\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$,

- An induced subgraph of \widetilde{W} 's Coxeter graph is a subgroup W
- Today, we will always have W defined by $\widetilde{W} \backslash\left\{s_{0}\right\}$
- Every element $\widetilde{w} \in \widetilde{W}$ can be written $\widetilde{w}=w^{0} w$, where $w^{0} \in \widetilde{W} / W$ is a coset representative and $w \in W$.
Simple example: For $\widetilde{w}=s_{0} s_{1} s_{2} s_{3} s_{0} s_{1} s_{2} \in \widetilde{S}_{4}$

$$
\widetilde{w}=s_{0} s_{1} s_{2} s_{3} s_{0} s_{1} s_{2}
$$

Less simple example: $\widetilde{w}=s_{1} s_{3} s_{2} s_{3} s_{0} s_{1} \in \widetilde{S}_{4}$

$$
\begin{aligned}
& \widetilde{w}=s_{1} s_{2} s_{3} s_{2} s_{0} s_{1} \\
& \widetilde{w}=s_{1} s_{2} s_{3} s_{0} s_{2} s_{1}
\end{aligned}
$$

\star Combinatorial interpretations are easier to use. \star

Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$

Window notation

Affine n-Permutations $\widetilde{S}_{n} \quad$ (G. Lusztig 1983, H. Eriksson, 1994) Write an element $\widetilde{w} \in \widetilde{S}_{n}$ in 1-line notation as a permutation of \mathbb{Z}.
Generators transpose infinitely many pairs of entries:

$$
\left.s_{i}:(\mathbf{i}) \leftrightarrow \mathbf{(i + 1}\right) \ldots(n+i) \leftrightarrow(n+i+1) \ldots(-n+i) \leftrightarrow(-n+i+1) \ldots
$$

$\operatorname{In} \widetilde{S}_{4}$,	$\cdots w(-4)$	$w(-3)$	$w(-2)$	$w(-1)$	$w(0)$	$w(1)$	$w(2)$	$w(3)$	$w(4)$	$w(5)$	$w(6)$	$w(7)$	$w(8)$	$w(9) \ldots$	
s_{1}	\ldots	-4	-2	-3	-1	0	2	1	3	4	6	5	7	8	10

\widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(n)] . \quad s_{1} s_{0}=[0,1,3,6]$
\star For $\widetilde{w}=w^{0} w$, the window of w^{0} is the window of \widetilde{w}, sorted \nearrow.

An abacus model for $\widetilde{S}_{n} / S_{n}$

(James and Kerber, 1981) Given $w^{0}=\left[w_{1}, \ldots, w_{n}\right] \in \widetilde{S}_{n} / S_{n}$,

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Bijection: Given w^{0}, create an abacus where each runner has a lowest bead at w_{i}.

Example: $[-4,-3,7,10]$

$\text { (-15) }-14(-13)$				$(-15)-14)-12$				(-15) - -13 - -12				
	10	(-9)		(-11) -10) -9				(-11) - -9 - -8				
	(-6)	-5			(-6)	-5					-	-4
	-2		0		-2	-1)	0				-	(0)
	(2)		4	$\xrightarrow{S_{1}}$ (1)	2	(3)	4	$\xrightarrow{\mathrm{SO}_{0}}$	1	2		
5	(6)		8	(5)	6	(7)	8		5	6		-
9	(10)	11	12	(9)	10	11	12		9	10	11	12
13	14	15	16	13	14	15	16		13	14	15	16
17	18	19	20	17	18	19	20		17	18	19	

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1 .\left(s_{1}: 1 \leftrightarrow 2\right)$
- s_{0} interchanges runners 1 and n (with shifts) $\left(s_{0}: 1 \stackrel{\text { shift }}{\leftrightarrow} 4\right)$

Integer partitions and n-core partitions

For an integer partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ drawn as a Ferrers diagram,

The hook length of a box is \# boxes below and to the right.

10	9	6	5	2	1
7	6	3	2		
6	5	2	1		
3	2				
2	1				

An n-core is a partition with no boxes of hook length dividing n.
Example. λ is a 4 -core, 8 -core, 11 -core, 12 -core, etc. λ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.

Core partitions for $\widetilde{S}_{n} / S_{n}$

Elements of $\widetilde{S}_{n} / S_{n}$ are in bijection with n-cores.
Bijection: $\{$ abaci $\} \longleftrightarrow\{n$-cores $\}$
Rule: Read the boundary steps of λ from the abacus:

- A bead \leftrightarrow vertical step
- A gap \leftrightarrow horizontal step

Fact: Abacus flush with n-runners \leftrightarrow partition is n-core.

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$

- has removable 0 boxes (s_{0} is a descent)
- has addable 1, 2, 3 boxes. (s_{1}, s_{2}, s_{3} are ascents)

Idea: Use to determine a canonical reduced expression for w^{0}.

- Tally residues from bottom to top,

	0 1 2 3 0 1
3 0	3 017230
$\begin{array}{ll}123 & 1\end{array}$	$\rightarrow-1230$
-0132301	01230
	30123
S_{1}	
	0 1 2 3 0
[2310123	
	123 1 121
$\begin{array}{lllllll}0 & 1 & 2 & 3 & 0 & 1\end{array}$	0 123
3011230	2

$s_{1} \downarrow$

0	1	2	3	0	1							
3	0	1	2	3	0							
2	3	0	1	2	3							
1	2	3	0	1	2							
0	1	2	3	0	1							
3	0	1	2	3	0		0	1	2	3	0	1
:---	:---	:---	:---	:---	:---							
3	0	1	2	3	0							
2	3	0	1	2	3							
1	2	3	0	1	2							
0	1	2	3	0	1							
3	0	1	2	3	0	from right to left.						

0	1	2	3	0	1
3	0	1	2	3	0
2	3	0	1	2	3
1	2	3	0	1	2
0	1	2	3	0	1
3	0	1	2	3	0

Canonical reduced expression for $\widetilde{S}_{n} / S_{n}$

Example: Reduced expression corresponding to $\lambda=(6,4,4,2,2)$:

$$
\mathcal{R}(\lambda)=s_{1} s_{0} s_{2} s_{1} s_{3} s_{2} s_{0} s_{3} s_{1} s_{0}
$$

0	1	2	3	0	1								
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1								
3	0	1	2	3	0	$\quad \xrightarrow{S_{1}}$	0	1	2	3	0	1	
:---	:---	:---	:---	:---	:---	:---	:---						
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1								

0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1	
3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0	
2	3	0	1	2	3	S_{2}	2	3	0	1	2	3	S_{1}	2	3	0	1	2	3	S3	2	3	0	1	2	3	S_{2}
1	2	3	0	1	2		1	2	3	0	1	2		1	2	3	0	1	2		1	2	3	0	1	2	
0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1		0	1	2	3	0	1	
3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0		3	0	1	2	3	0	

0	1	2	3	0	1		0	1	2	3	3	0	1		0	1	2	3	0		1		0	1	2	3			1		0	1	2	3	0	1
3	0	1	2	3	0		3	0	1		2	3	0		3	0	1	2	3		0		3	0	1	2	3		0		3	0	1	2	3	0
2	3	0	1	2	3	$\xrightarrow{S_{0}}$	2	3	0		1	2	3	$\xrightarrow{\mathrm{S}_{3}}$	2	3	0	1	2		3	$\xrightarrow{S_{1}}$	2	3	0	1			3	$\xrightarrow{S_{0}}$	2	3	0	1	2	3
1	2	3	0	1	2		1	2	3	0	0	1	2		1	2	3	0	1		2		1	2	3	0			2		1	2	3	0	1	2
0	1	2	3	0	1		0	1	2		3	0	1		0	1	2	3	0		1		0	1	2	3			1		0	1	2	3	0	1
3	0	1	2	3	0		3	0	1	2	2	3	0		3	0	1	2	3		0		3	0	1	2			0		3	0	1	2	3	0

Bounded partitions for $\widetilde{S}_{n} / S_{n}$

A partition $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ is b-bounded if $\beta_{i} \leq b$ for all i.
Elements of $\widetilde{S}_{n} / S_{n}$ are in bijection with $(n-1)$-bounded partitions.
Bijection: (Lapointe, Morse, 2005)

$$
\{n \text {-cores } \lambda\} \leftrightarrow\{(n-1) \text {-bounded partitions } \beta\}
$$

- Remove all boxes of λ with hook length $\geq n$
- Left-justify remaining boxes.

Canonical reduced expression for $\widetilde{S}_{n} / S_{n}$

Given the bounded partition, read off the reduced expression:
Method: (Berg, Jones, Vazirani, 2009)

- Fill β with residues i
- Tally s_{i} reading right-to-left in rows from bottom-to-top

Example. $[-4,-3,7,10]=s_{1} s_{0} s_{2} s_{1} s_{3} s_{2} s_{0} s_{3} s_{1} s_{0}$.

- The Coxeter length of w^{0} is the number of boxes in β.

Summary for $\widetilde{S}_{n} / S_{n}$

- See S_{n} as parabolic subgroup of \widetilde{S}_{n}
- Window notation
- \widetilde{S}_{n} elements can be written as a permutation of \mathbb{Z}
- Min. len. coset rep's correspond to sorted \mathbb{Z}-permutations.
- Abacus models
- Define the abacus by reading the entries from a window
- Generators act nicely: They interchange runners
- Core partitions
- Define the core by reading beads and gaps
- Generators act nicely: They add and remove boxes using residues
- Bounded partitions
- Define by collapsing the core partition
- Reading the residues gives a reduced expression!

Summary for W / W

- See W as parabolic subgroup of \widetilde{W}
- Window notation
- \widetilde{W} elements can be written as a permutation of \mathbb{Z}
- Min. len. coset rep's correspond to sorted \mathbb{Z}-permutations.
- Abacus models
- Define the abacus by reading the entries from a window
- Generators act nicely: They interchange runners
- Core partitions
- Define the core by reading beads and gaps
- Generators act nicely: They add and remove boxes using residues
- Bounded partitions
- Define by collapsing the core partition
- Reading the residues gives a reduced expression!

Coxeter Graphs for Types $\widetilde{B}, \widetilde{C}, \widetilde{D}$

Type \widetilde{C} / C :

Type \widetilde{B} / D :

Type \widetilde{B} / B :

Type \widetilde{D} / D :

Window notation for \widetilde{W}

Write $\widetilde{W} \in \widetilde{W}$ as a mirrored permutation of \mathbb{Z} with period $N=2 n+1$.

- Satisfies $\widetilde{w}(i+N)=\widetilde{w}(i)+N$ and $\widetilde{w}(-i)=-\widetilde{w}(i)$.
- Define action of generators on [$\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(n)]$; extend:
- s_{i} : switch $\widetilde{w}(i) \leftrightarrow \widetilde{w}(i+1)$
- s_{0}^{C} : switch $\widetilde{w}(-1) \leftrightarrow \widetilde{w}(1) \quad s_{n}^{C}$: switch $\widetilde{w}(n) \leftrightarrow \widetilde{w}(n+1)$

In C_{4}	$w(-4) w(-3) w(-2) w(-1)$				(0)	w(1) w(2) w(3) w(4)				$w(5) w(6) w(7) w(8)$				$w(9)$	$w(10) \ldots$	
s_{1}	-4	-3	-1	-2	0	2	1	3	4	5	6		7	9	11	
${ }^{\text {s }}$	-4	-3	-2	1	0	-1	2	3	4	5	6	7	10	9	8	
s_{4}	-5	-3	-2	-1	0	1	2	3	5	4	6		8	9	10	
$s_{1} s_{0}$	-4	-3	-1	2	0	-2	1	3	4	5	6		11	9	7	

\widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(n)] . s_{1} s_{0}=[-2,1,3,4]$

Window notation for \widetilde{W}

In type \widetilde{B} (version 1) and type \widetilde{D}, the s_{0} generator is:

- s_{0}^{D} : switch $\{\widetilde{w}(-2), \widetilde{w}(-1)\} \leftrightarrow\{\widetilde{w}(1), \widetilde{w}(2)\}$
- Therefore, $|\{i<0: w(i)>0\}|$ is even.

$\ln D_{4}$	w(-4) w(-3) w(-2) w(-1)					$w(1) w(2) w(3) w(4)$				$w(5) w(6)$			$w(8)$	$w(9)$	$w(10) \ldots$	
s_{0}^{D}	-4	-3	1	2	0	-2	-1	3	4	5	6	10	11	9	7	
s_{4}^{D}	-6	-5	-2	-1	0	1	2	5	6	3	4	7	8	9	10	

In type \widetilde{B} (version 2) and type \widetilde{D}, the s_{n} generator is:

- s_{n}^{D} : switch $\{\widetilde{w}(n-1), \widetilde{w}(n)\} \leftrightarrow\{\widetilde{w}(n+1), \widetilde{w}(n+2)\}$
- Therefore, $|\{i \geq n+1: w(i) \leq n\}|$ is even.

Window notation for \widetilde{W} / W

Theorem. Given an element $\widetilde{w} \in \widetilde{W}$ written as a mirrored permutation of \mathbb{Z}, we obtain its minimal length coset representative $w^{0} \in \widetilde{W} / W$ by sorting the entries in the base window:

Type	Sorting conditions
\widetilde{C} / C	$w(1)<w(2)<\cdots<w(n)<w(n+1)$
\widetilde{B} / B	$w(1)<w(2)<\cdots<w(n)<w(n+1)$ Elements of $\widetilde{B}_{n} / B_{n}$ are elements of $\widetilde{C}_{n} / C_{n}$.
\widetilde{B} / D	$w(1)<w(2)<\cdots<w(n)<w(n+2)$ Elements of $\widetilde{B}_{n} / D_{n}$ are not necessarily elements of $\widetilde{C}_{n} / C_{n}$ $\widetilde{D} / D$$w(-2)<w(1)<w(2)<\cdots<w(n)<w(n+2)$ Elements of $\widetilde{D}_{n} / D_{n}$ are also elements of $\widetilde{B}_{n} / D_{n}$.

- It makes sense to define abaci for \widetilde{W} / W !

Abacus models for \widetilde{W} / W

(Hanusa and Jones, 2011) Given $w^{0}=\left[w_{1}, \ldots, w_{2 n}\right] \in \widetilde{W} / W$, create an abacus with $2 n$ runners with lowest beads in positions w_{i}. Example: $[-9,-4,1,6,11,16] \in \widetilde{C}_{3} / C_{3}$

(2) (28) (23) (24) (23) (2)	(22) (22) (2) (27) (23) (2)	(27) (27) (2) (-2) (23) (2)	
(1) (-1) (1) - -9 -8)	(11) (1) (1) (1) -9$)^{-8}$	(17) (1) (11) (1) -9 (-8	(11) (1) (1) (1) -9
	(-) (-5) (-4) (3) -2$)^{-1} \xrightarrow{s_{0}}$	(-6) (-5) (-4) (-3) ${ }_{(-2)}^{(-1)} \xrightarrow{s_{3}}$	(-) ${ }^{-5}$
(1) (2) $3^{3}(4) 5$ (6)	(1) (2) $3^{(4)(5)}$	1 (2) ${ }^{3}$ (4)(5)(6)	1 (2) (3) 4 (5) (6)
8 (9) 10 (11)	(8) 910 (11) 12	910 (11) 12 (13)	9 (10) 1112 (13)
15 (16) 17	(15) $16 \quad 17 \quad 18 \quad 1920$	(1)	
23	$23 \quad 24 \quad 25 \quad 26$		

Again, generators interchange runners:

$$
\begin{aligned}
& \text { - } s_{i}:(i) \leftrightarrow(i+1) \&(2 n-i) \leftrightarrow(2 n-i+1) . \quad\left(s_{1}: 1 \leftrightarrow 2 \& 5 \leftrightarrow 6\right) \\
& -s_{0}^{C}: 1 \stackrel{\text { shift }}{\leftrightarrow} 2 n \quad\left(s_{0}: 1 \stackrel{\text { shift }}{\leftrightarrow} 6\right)>s_{0}^{D}:\{1,2\} \stackrel{\text { shift }}{\leftrightarrow}\{2 n-1,2 n\} \\
& \text { - } s_{n}^{C}: n \leftrightarrow n+1\left(s_{3}: 3 \leftrightarrow 4\right)>s_{n}^{D}:\{n-1, n\} \leftrightarrow\{n+1, n+2\}
\end{aligned}
$$

Structure of abaci and cores in \widetilde{W} / W

In abaci:

- Symmetry: bead in position $i \leftrightarrow$ gap in position $2 n+1-i$.
- If s_{0}^{D} : number of gaps $<2 n+1$ is even. (even abacus)

Under the bijection between abaci and core partitions,

- Symmetry: Abaci in $\widetilde{W} / W \leftrightarrow$ Self-conjugate (2n)-cores
- If s_{0}^{D} : even number of boxes on the main diagonal (even core)
- Know the action of generators on cores.

Residue Structure in \widetilde{W} / W

In $\widetilde{C}_{n} / C_{n}$, we have fixed residue structure.
The residues increase from 0 up to n and back down to 0 :

0	1	2	3	2	1	0	1	2	
1	0	1	2	3	2	1	0		2
2	1	0	1	2	3	2	1		
3	2	1	0	1	2	3	2		0
2	3	2	1	0	1	2	3	2	1
1	2	3	2	1	0	1	2	3	2
0	1	2	3	2	1		1	2	3
1	0			3	2				2
2					3				
	2	1							

- s_{i} acts by adding or removing boxes with residue i.

Example: $[-9,-4,1,6,11,16]=s_{1} s_{0} s_{3} s_{2} s_{1} s_{0} s_{2} s_{3} s_{2} s_{1} s_{0}$.

Residue Structure in \widetilde{W} / W

In other types, residues involving $\{n-1, n\}$ and $\{0,1\}$ depend on λ. In type \widetilde{D} / D, there are both escalators and descalators.

		2				$3{ }^{3} / 2 \mid 1$	10	0		
	0	1	2			32				
		0	0				32	2		
	2	0	0	1	23			32		
	3	2	1		02	3				
			2		01	23				
					10	023				3
					20	012	23			
					32	100	02	23		
		3				200	01	12		
		2	3			321	10	0	2	
						32	20	0	1	
2							32	21	0	
					23			32	0	

- s_{i} adds or removes boxes with residue i (in contiguous groups).

Example in $\widetilde{D}_{5} / D_{5}$: $s_{1} s_{2} s_{3} s_{4} s_{5} s_{3} s_{2} s_{0}$.

Properties of abaci and cores for W / W

Theorem. Minimal length coset representatives in \widetilde{W} / W are in bijection with the following sets of abaci and self-conjugate partitions:

Theorem. The residues in the partitions have the following structure:

Type	Abaci	Partitions	Residues
\widetilde{C} / C	all abaci	all self-conj $(2 n)$-cores	fixed
\widetilde{B} / B	even abaci	even self-conj $(2 n)$-cores	fixed $w /$ descalators
B / D	all abaci	all self-conj $(2 n)$-cores	fixed $w /$ escalators
\widetilde{D} / D	even abaci	even self-conj $(2 n)$-cores	fixed $w /$ descalators and escalators

Canonical reduced expression for W / W

Peel a core to obtain a canonical reduced expression for w^{0}.
Remove boxes from the center and record the residues at each step.

0	1	2	3	2	1	0	1	2	3
1	0	1	2	3	2	1	0	1	2
2	1	0	1	2	3	2	1	0	1
3	2	1	0	1	2	3	2	1	0
2	3	2	1	0	1	2	3	2	1
1	2	3	2	1	0	1	2	3	2
0	1	2	3	2	1	0	1	2	3
1	0	1	2	3	2	1	0	1	2
	1	0	1	2	3	2	1	0	1
	2	1	0	1	2	3	2	1	0

$$
\mathcal{R}(\lambda)=s_{0} s_{1} s_{0} s_{3} s_{2} s_{1} s_{0} s_{2} s_{3} s_{2} s_{1} s_{0} s_{2} s_{3} s_{2} s_{1} s_{0}
$$

Bounded partitions for \widetilde{W} / W

Left-justifying this upper diagram gives a bounded partition (satisfying type-dependent conditions).

0	1	2	3	2	
	0	1	2	3	2
		0	1	2	3
			0	1	
				0	

0	1	2	3	2
0	1	2	3	2
0	1	2	3	
0	1			
0				

Bounded partitions:

- Encode a reduced expression for the element
- Have Coxeter length number of boxes
- Have appeared in crystal basis theory (as Young walls), in work of Eriksson-Eriksson, and in work of Billey-Mitchell (as affine colored partitions)

Lapointe-Morse-like bijection for bounded partitions

- Remove all boxes of λ with hook length $\geq 2 n$
- Reinsert the boxes on the main diagonal, remove those below.
- Left-justify remaining boxes to diagonal.
- (When not \widetilde{C} / C, remove boxes on main and/or n-th diagonal.)
- Result: Upper diagram.

$\lambda=(10,9,6,5,5,3,2,2,2,1)$

$$
\beta=(5,5,4,2,1)
$$

Conditions on bounded partitions

Theorem. We have a bijection of \widetilde{W} / W with these bounded partitions:

Type	Bounded partition structure
\widetilde{C} / C	parts $\leq 2 n$, where $1, \ldots, n$ occur at most once.
\widetilde{B} / B	parts $\leq 2 n-1$, where $1, \ldots, n-1$ occur at most once.
\widetilde{B} / D	parts $\leq 2 n-1$, where $1, \ldots, n-1$ occur at most once, and one n part may be starred.
\widetilde{D} / D	parts $\leq 2 n-2$, where $1, \ldots, n-2$ occur at most once, and one $n-1$ part may be starred.

Combinatorial interpretations in \widetilde{W} / W

Future Work

- More combinatorial interpretations for \widetilde{W} / W
- Learn more about the alcove model
- What do you know?
- Fully commutative elements in types $\widetilde{B}, \widetilde{C}$, and \widetilde{D}
- Investigation in \widetilde{A} required combinatorial interpretations
- Find a 321-avoiding characterization?
- Self-conjugate core partitions
- Related to $\widetilde{C}_{n} / C_{n}$.
- Related to the alternating group.

Thank you!

Slides available: people.qc.cuny.edu/chanusa $>$ Talks Interact: people.qc.cuny.edu/chanusa $>$ Animations
[Christopher R. H. Hanusa and Brant C. Jones. Abacus models for parabolic quotients of affine Coxeter groups ar又iv:1105.5333

国 Christopher R. H. Hanusa and Brant C. Jones. The enumeration of fully commutative affine permutations European Journal of Combinatorics. Vol 31, 1342-1359. (2010)

Anders Björner and Francesco Brenti.
Combinatorics of Coxeter Groups, Springer, 2005.

