

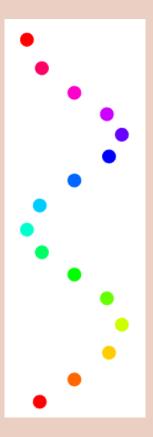
The Power and Pitfalls of *Mathematica* for 3D Design

Christopher R. H. Hanusa Queens College, CUNY

My Mathematica Experience

- Symbolic computational software
- Starting in 2008
 - Friendly syntax
 - Extensive documentation
 - Visualization capabilites
- Research Exploration
 - Experimental Math
- In my Teaching
 - Math Models, MV Calc, Math w/Mathematica

Teaching Methods

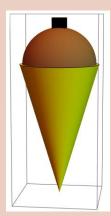

- Give students the tools to succeed
 - How to use the Documentation Center
 - Stand-alone tutorials
 - One-on-one help
- Project-based learning
 - Let them explore individually
 - Clear instructions and rubric
 - 3D printing since Spring '15

Mathematics in 3D Printing

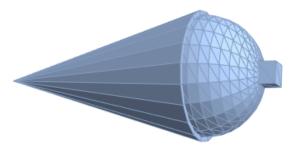
Design in *Mathematica* requires specifying coordinates

- 3D Coordinate System
- Transformations
 - Rotation, Translation, Scaling
- Parametric Curves / Vector Functions
- Trigonometry
 - Angles between lines, sine, arctan,
- Geometric Objects
 - Equations of Torus, Ellipsoid, ...
 - Polyhedra

Example: Geometry Basics


How does it work?

Coordinates for Primitives:


Sphere[{0, 0, 0}, .28] Cuboid[{-.05, -.05, .26}, {.05, .05, .35}] Cone[{{0, 0, 0}, {0, 0, -1}}, .3]

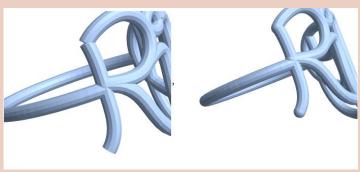
What doesn't work?

- Certain primatives not exportable!
 - e.g. Tetrahedron, Pyramid
- Resolution in STL file is poor
 - Sphere, Cone
 - Use ParametricPlot3D

Example: Curves and Surfaces

How does it work?

- BSplineCurve, Interpolation
- ParametricPlot3D
 - $f: \mathbb{R} \to \mathbb{R}^3$ plots a curve
 - $f: \mathbb{R}^2 \to \mathbb{R}^3$ plots a surface


ParametricPlot3D[... ,PlotStyle → Tube[.1]]

Secret option: Extrusion

What doesn't work?

- Can't export Tube[curve].
 - Must add Tube in PlotStyle
- Caps of tubes are missing
 - Insert them independently and mind their resolution

Example: Polyhedra

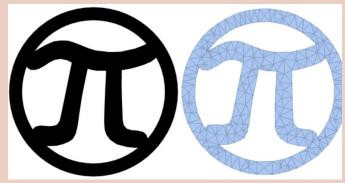
How does it work?

- PolyhedronData
 - Imports curated polyhedra
 - Extract for modifications
 - Vertices, Incidences...
- GraphicsComplex
 - Create your own polyhedron!

What doesn't work?

Time intensive to specify EVERYTHING
 Is it manifold?

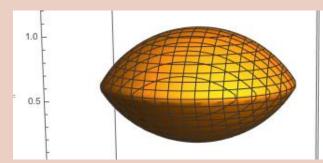
Example: MeshRegion Objects


How does it work?

- DiscretizeRegion / DiscretizeGraphics
 - Triangulates 2D and 3D objects
- ImageMesh
 - Image → MeshRegion
- Mesh Operations
 - RegionProduct, RegionUnion,
 RegionIntersection
- Extraction for Modifications
 - MeshCoordinates, MeshPrimitives

What doesn't work?

Can't intersect 3D MeshRegions!

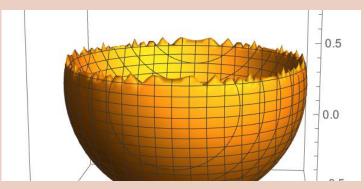


Example: RegionPlot3D

How does it work?

Specify Boolean operations

$$x^2 + y^2 + z^2 \le 1$$
 && $x^2 + y^2 + (z - 1)^2 \le 1$


Thicken a 2D surface

PlotStyle -> {Directive[Thickness[.1]]}

What doesn't work?

- Poor edges / smoothing
 - Improve via PlotPoints

Mathematica's Power

- Programmable & Algorithmic approach to all
 - Notebook interface: No point and click!
 - Table and Map to apply systematically
 - Easy to add randomness. RandomReal[]
 - Easy to add color. Hue[]
- Exports to multiple file formats
 - Export["filename.stl",model]
- Visualization Capabilities
- Scheduled Updates

Drawbacks

- 3D printing rather new to *Mathematica*.
- It doesn't "just work".
 - Certain commands not exportable at all
 - Never know when it will export or crash
 - Difficult to understand error messages
- Requires license (\$\$\$)
- Colleagues use Sage
- BoundaryMeshRegion: The boundary curves self-intersect or cross each other in BoundaryMeshRegion[{{68.6021, 41.1552, 99.}, {85.7527, 51.444, 99.}, {85.7527, 51.444, 99.}, {85.7527, 51.4392, 152.}, {-33.282, 94.2991, 152.}, {-33.282, 94.2991, 99.}, {32.0944, 94.1*}].
 Join: Heads List and MeshCoordinates at positions 1 and 2 are expected to be the simplest. Nonatomic expression expected at position 1 in First[Fail].
 First: Nonatomic expression expected at position 1 in First[2].
 MeshCells: Options expected (instead of Multicells) beyond position 2 in MeshCells:
- ... MeshCells: MeshCells called with 3 arguments; 2 arguments are expected.
- Join: Heads List and MeshCells at positions 1 and 2 are expected to be the same.

Resources

- Documentation Center
- Mathematica StackExchange
- Henry Segerman's

3D Printing for Mathematical Visualisation

- My class tutorials:
 - 213.mathzorro.com
- My blog: (3D design with Mathematica series)
 - blog.mathzorro.com
- blog.wolfram.com

THANK YOU!

qc.edu/~chanusa > Research > Talks

Queens College Students and Colleagues

mathartshop.com

Shapeways &Lauren Slowik

