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Have title slide on projector.

I'm glad to have you all here today. I will step through my thesis high-
lighting the most important ideas and results. The title of this talk talks
about counting cycle systems. We will talk about that in the second
half of the talk.

Put “Outline” slide on projector.

I start with an introduction and brief history of the subject of the enu-
meration of domino tilings. Then I introduce the concept of Aztec
pillows and generalized Aztec pillows. From there, I head into results,
starting with matrix-theoretic results. I then present the Gessel-Viennot
method, and show how I was able to extend it to a new method for
counting tilings of generalized Aztec pillows. Lastly I touch on some
future directions for study in this vein.

Without further ado, I present ... my thesis.
Put “Introduction’ slide on projector.

So let’s start at the beginning. The question of the day is “How many
domino tilings are there of a given region?”. The example you should
have in mind is a chessboard that we want to cover by non-overlapping
dominoes, or in other words 2 x 1 or 1 x 2 rectangles.

In the language of tilings, the chessboard will be a region, the rectangles
are tiles, and any collection of tiles that covers the board is called a
tiling.

So think in your head about how many domino tilings you might expect
for a chessboard. How many people think that there are more than 10
possible tilings? Keep your hands up if you think there will be more than
1007 1,0007 10,0007 100,0007 1,000,0007 10,000,0007

Well, the correct answer is 12,988,816!
Fill in answer.

It may be surprising, but this number is a perfect square, equal to 36042.
We've got an answer, but how are we better off for knowing this answer?
This implies that we should actually change the question of the day to
being "How can we calculate quickly how many domino tilings there are
of a given region?”. And how can we understand why this number is a
perfect square?
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Introduction

Consider a chessboard —  ‘Yregion”
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many domino tilings are there of a given region?

A: (chessboard)

# Rgxg =
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One way to get started is by considering a simple equivalence. Given
any region, there is an associated dual graph to the region, as shown
here in the case of a chessboard.

Use correspondence transparencies.

Remember that a perfect matching of a graph is a way to choose edges
of the graph that cover completely the vertices of the graph.

Now given any domino tiling of the region, there is an associated perfect
matching of the region’s dual graph. If you see a vertical domino, you
place a vertical edge on the graph, etc.

After now, when I say matching, I mean perfect matching.

So if we want to count the number of domino tilings of a region, we can
just as easily count the number of matchings of the region’s dual graph.

Write on blackboard domino tilings of region < matching of region’s
dual graph.

So now we want to know how we can count the number of matchings
of a graph efficiently.

Put “History of the dual graph” slide on projector.

They popularized a way to count matchings using matrices in the case
where the graph is bipartite and planar.

Remember that a bipartite graph is one where there are two types of
vertices, black and white, such that the only edges are between black
and white vertices. (There are no edges between vertices of the same
color.)

Notice that there can only be a perfect matching if there are the same
number of black and white vertices.

Given a bipartite graph, construct a matrix A with rows corresponding to
black vertices and columns corresponding to white vertices. The entries
a;; of A are equal to 1 if there is an edge between black vertex b; and
white vertex wj.



Recall that the permanent of a matrix is like the determinant of a matrix
with no sign in the permutation expansion of the determinant. A non-
zero term in the permanent of A corresponds exactly to finding n non-
zero entries of A with one 1 in each row and each column. n such ones
corresponds to n edges in the graph, covering each white vertex and
each black vertex exactly once — AHA! a perfect matching.

Put “Matching Example” slide on projector.

This implies that we can take the permanent of this incidence matrix
and we would get the number of matchings in the graph. This method
was used by a physicist named Kasteleyn in the 1960's to calculate the
number of matchings on a rectangular section of the square grid.

Then in 1963, another physicist named Percus found a condition on pla-
nar graphs that allowed for a sign convention to convert the permanent
into a determinant.

You take this determinant and you get this formula. But somehow this
isn't terribly satisfying. For one, it's not even clear that this formula pro-
duces an integer. Second, it doesn’'t quite tell you much combinatorial
information about the answer. For example, when we are dealing with
an n X n region, the formula gives either a square or two times a square.
That number I gave on the previous slide 12,988,816 = (3604)2.

Notice that the size of this Kasteleyn-Percus determinant is of size O(n?),
where n is the length of a side of the square. You only get a permanent
on bipartite graphs. You can only convert it to a determinant on planar
graphs.

What I am building up to is a method that allows us to calculate a
determinant of size O(n) on a certain type of graph that needs neither
be bipartite nor planar.



Matrices from the dual graph

Kasteleyn-Percus
e On planar graphs

e On bipartite graphs

Evaluate a permanent

Evaluate a determinant

A: (2m x 2n chessboard)

#Romzn = I1 11 (405

=1 k=1 2n+1 2m + 1

i Evaluate a determinant of size O(n) |



Example Matrix

i) (A)

l l l

2 perfect permanent determinant
matchings =2 =2



We've been talking mostly about rectangular regions, but now let me
introduce you to another nicer region.

Put “Aztec Diamonds” slide on projector.

This region is called an Aztec diamond. Aztec diamonds are a family of
regions depending on the number of steps it has on its diagonals. It is
a much nicer region since when we count its number of domino tilings

it gives 2("2").

This region was presented by physicists Grensing, Carlsen, and Zapp
in the 1980’'s but they gave no indication of a proof. In 1992, Elkies,
Kuperberg, Larsen, and Propp gave four different proofs of this formula.

Put “Aztec Pillows" slide on projector.

A related region that was introduced by Jim Propp in the 1990's. It
is called an Aztec pillow because of its shape. Like the Aztec diamond
it is rotationally symmetric. Unlike the Aztec diamond, its upper-left
and lower-right border has steps of length 3 instead of length 1. We
can index these pillows by the length of their middle 2 x 2n belts. For
example, this first pillow is AP, and the second one is AP;. Notice that
they have upper and lower plateaux that are of even length, and that
the length of the plateaux are either 2 or 4 depending on the parity of
.

This region was interested because the number of tilings of the region
appears to have a nice formula for its number of tilings. I'll talk more
about this at the end of the talk.

Notice that Aztec diamonds and Aztec pillows are rotationally symmetric
about the origin and are embedded in the square grid. This implies that
their number of tilings is a sum of two squares.

When working with Aztec pillows and experimental results that came
with them, it became clear that we could generalize the notion of an
Aztec pillow further.

Put “Generalized Aztec Pillows” slide on projector.

Just like with Aztec diamonds and Aztec pillows, we define a generalized
Aztec pillow to be a region with steps that are of odd length (except
the top and bottom plateaux which are even). They still have middle
belts that are of even length. Here are a couple examples.



Aztec Diamonds







Aztec Pillows




Cycle Systems

Given a directed graph G, a cycle system is a union
of vertex-disjoint cycles.
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The digraph of an Aztec diamond
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(Introduced by Brualdi and Kirkland)

10



Domino Tilings «— Cycle Systems
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Now I want to go into another interesting approach to deal with the dual
graph of a region.

Put “Natural Matching' slide on projector.

If we place some simple matching on the graph and then superpose an
arbitrary matching on top, we know that taking the symmetric difference
will yield a union of cycles. (Right? A 1-factor plus a 1-factor yields a
2-factor.)

Put “Directed Edges”’ slide on projector.

Now if we put directions on the edges so that in N, we send edges from
black vertices to white vertices while in M we send edges from white
vertices to black vertices, the resulting cycles when we superpose the
two matchings will also be directed.

Put “cycles” slide on projector.

So there is a one to one correspondence between unions of directed
cycles and matching of the dual graph. In particular, we are looking for
directed cycles in this graph.

We can do one further simplification step. These blue edges are constant
in each of the graphs, so we could easily contract them to a point, and
the cycle system structure would stay the same.

Put “The digraph of an Aztec diamond” slide on projector.

This is what the resulting graph looks like in the case of an Aztec
diamond. This graph was first presented by Brualdi and Kirkland in
2003. Given a region’s dual graph, we call this the region’s digraph.

In particular, this implies that the number of matchings of the dual graph
is equal to the number of cycle systems in the region’s digraph.

Write on blackboard <-> cycle systems in the region’s digraph.



Quick Detour to the 1980’s

Gessel and Viennot
Lindstrom
Karlin and McGregor

Count non-intersecting path systems

A path system P
e k vertex-disjoint paths q; : s; — 20

e a permutation o € S;.

The sign of P =sgn (o)

pT = # P such that sgn(P) = +1
p~ = #P such that sgn(P)= —1

The matrix A = (a;) ; a;; = #paths from s; — ¢,

Theorem (G-V, 1985-89): det A =ptT —p—.

14
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Idea of Proof: Gessel-Viennot

Permutation Decomposition of the Determinant

detA= ) sgn(0)ai (1) Ggo(k)
oeSy,

o If P=1{q1,...,q} IS non-intersecting
— Contributes sgn (o) to det A

o If P ={q1,...,q,} has intersecting paths

— Sign-reversing involution = Contributes O.

17



Count non-intersecting cycle systems

A cycle system C

e A union of vertex-disjoint directed cycles

The sign of ¢ = (=1)¢tm™

¢ = # of edges from G» to G1 in C.
m = #£ of vertex-disjoint cycles in C.

¢t = #C such that sgn(C) = +1
¢~ = #C such that sgn(C) = -1

The matrix A= { 7+ paths from }

v; o v; in Gy

| A I o 7 paths from
MH_[—Ik B] B_{wk_|_z-t0wk_|_jinG2}

Theorem (H, 2004): det My =c¢t —c™.
(The “Hamburger Theorem')

18



Example: ADy

L%

< % #
&
']

1 2 6 22
' f g 1,2,6,22,90,394, ...
1 large Schroder N°s

1 A006318

2 1 ...combin. interp....
6 2 1

22 6 2 1

det My =210 = #AD,
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Idea of Proof

Key: Terms cancel in the permutation decompo-
sition of the determinant of M.

Definition: A walk system is a union of directed
cycles which may not be vertex-disjoint.

Lemma 1. If a walk system W contains a walk
that is self-intersecting or contains two intersect-
ing walks that are not 2-cycles, VW belongs to one
well-defined family F of walk systems of these
types that cancel each other in the permutation
expansion of the determinant of My.

N7
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Idea of Proof

Definition: A permutation o is minimal if it is a
product of disjoint cycles of the form (ig,k + ip)

or (ig,i1,k + i1,k +io,i2,...,k +ipk+ig).

Definition: A minimal walk system is a walk sys-
tem such that its corresponding permutation is
minimal. (=Original Def'n of Cycle System)

Lemma 2. Let W be a walk system that does
not satisfy the conditions of Lemma 1. If W is
not minimal or if it contains a walk that intersects
with a 2-cycle, WW belongs to one well-defined fam-
ily F of walk systems of these types that cancel
each other in the permutation expansion of the
determinant of My.

(12364) (1364)(25)

21



Idea of Proof

Lemma 3. The walk system W is a minimal cycle
system with vertex-disjoint cycles if and only if W
does not satisfy the conditions of Lemmas 1 and
2.

Therefore only minimal cycle systems contribute
(their sign) to the determinantal expansion of M.

Hence, det My = ¢t — ¢~ o

22



Why is this exciting?
e It's pretty
e \Works on non-planar graphs

e Reduces determinant size
— on ADp: n(n—1) — 2n

— Schur complement: 2n — n

e Purely combinatorial

e Applies to generalized Aztec pillows

23



Schur Complement
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What's next?

e Generalization of Propp’s Conjecture

e Relaxation of hamburger structure?

25
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Propp’s Conjecture and
Generalizations

Conjecture (Propp, 1999):
F# APy = losn  ly =7

(0.}

Z n 543z 4+ 22— 23
spx’t =
" 1 —2x —2x2 —2x3 4 24

n=0

H#APopyo =i, Ly =7

o0

n 54 6x + 322 — 213
S -
1 —2x —2x2 — 223 + 4

n=0

Already known New Conjecture
H#AP, = a? + b2 lnla, Ln|d

¢y, divides minors of
hamburger matrix

¢n, divides # (AP \ {tiles})
(and not ¢2)

odd pillows also have ¢2sy,
(no recurrence yet for sy).

Let p(n) = #AP,,_3.
Then p(m)|p(n) when m|n.

27
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Data

228 .72.173.312 1088

1012-1032.2617 - 83632 2617
28.5.173.192.37.532.712.892 3145
312.7561 - 272832 . 351492 7561
217.32.5.112.194.592.612.101 - 2412 9090

n #APS Sn
1 2 2
2 5 5
3 22.5 5
4 32.13 13
5 210 16
6 192.37 37
7 24.32.5.192 45
8 109 - 2632 109
9 29.34.5.112.13 130
10 34.313.9112 313
11 26.32.13.29.432.712 377
12 5.114.312.1512.181 905
13
14
15
16
17
18

19

310.52.13.292.41%.432.2112.17232 21853
210.232.432.109-241-2632-4392.4612-5932 26269
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T hanks!

I am: Christopher Hanusa

http://www.math.binghamton.edu/chanusa/

Thank you

Henry Cohn
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