Let's Count! Enumeration through Matrix Methods

Christopher Hanusa

Queens College
February 14, 2008

Counting

Example: How many ways are there to place 32 blank dominoes on a chessboard?

Answer:

Outline

- Enumeration of disjoint path systems
- Introduction to path systems
- The Gessel-Viennot method
- Applications of Gessel-Viennot
- Enumeration of domino tilings
- Perfect matchings of a graph
- Kasteleyn-Percus matrices
- Open Problems

Path Systems

A graph $G=(V, E)$.

A directed graph: Orient each edge $e \in E$.

A path from vertex a to vertex b :

Two paths are disjoint: They share no vertices.

Path Systems

A path system \mathcal{P} from \mathcal{A} to \mathcal{B} in G :

Recall: $\operatorname{sign}(\sigma)=(-1)^{\#}$ of transp. that compose σ

Define: $\operatorname{sign}(\mathcal{P})=\operatorname{sign}(\sigma)$.

Combinatorial data:
Define $m_{i j}=\#$ of paths from a_{i} to b_{j} in G.

$$
M=(\quad)
$$

The Gessel-Viennot Method

Let G be a directed graph.

Let $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subseteq V(G)$.
Let $\mathcal{B}=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\} \subseteq V(G)$.
Define $M=\left(m_{i j}\right)_{1 \leq i, j \leq k}$.
Then

$$
\operatorname{det} M=\sum_{\substack{\text { vertex- } \\ \text { disjoint } \\ \mathcal{P}}} \operatorname{sign}(\mathcal{P})
$$

In our example, det $M=5$.

Consequences

(1)

A combinatorial question of counting path systems can be evaluated using a determinant.

(2)

A determinant may be evaluated by counting path systems in an associated lattice.

Example: A Catalan Determinant

$$
c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6}, c_{7}, \ldots
$$

$$
\text { Catalan Numbers: } \quad 1,1,2,5,14,42,132,429, \ldots
$$

Interpretation: Triangulations of an $(n+2)$-gon.

Also: Number of lattice paths from $(0,0)$ to (i, i) :

Did you know?

$$
\operatorname{det}\left(\begin{array}{ccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{n} \\
c_{1} & c_{2} & & & \\
c_{2} & & & & \vdots \\
\vdots & & & & \\
c_{n} & & \ldots & & c_{2 n}
\end{array}\right)=1
$$

Example: A Catalan Determinant

\# of paths from a_{i} to $b_{j}=c_{i+j}$.

$$
\operatorname{det} M=\begin{gathered}
\# \text { disjoint path systems } \\
\text { from } \mathcal{A} \text { to } \mathcal{B} \\
\text { in the above lattice }
\end{gathered}
$$

Path systems disjoint \Rightarrow paths must be $a_{0} \rightarrow b_{0}, a_{1} \rightarrow b_{1}, a_{2} \rightarrow b_{2}, \ldots, a_{n} \rightarrow b_{n}$.

There is only one possibility, so $\operatorname{det} M=+1$

Proof of Gessel-Viennot

$\sum_{\substack{\text { all patn } \\ \text { systems } \mathcal{P}}} \operatorname{sign}(P)$	$=\sum_{\substack{\text { all } \\ \sigma \in S_{k}}} \operatorname{sign}(\sigma)\binom{\#$ path systems }{ w/ perm. $\sigma}$
	$=\sum_{\substack{\text { all } \\ \sigma \in S_{k} \\ \hline}} \operatorname{sign}(\sigma) m_{1 \sigma(1)} m_{2 \sigma(2)} \cdots m_{k \sigma(k)}$
	$=\operatorname{det} M$

In order to prove

$$
\sum_{\text {disjoint }_{\mathcal{P}}} \operatorname{sign}(P)=\operatorname{det} M,
$$

we need to prove

$$
\sum_{\substack{\text { non-disjoint } \\ \mathcal{P}}} \operatorname{sign}(P)=0
$$

Proof of Gessel-Viennot

We want to prove $\sum_{\substack{\text { non-disjoint } \\ \mathcal{P}}} \operatorname{sign}(P)=0$.

Define $N:=$ set of all non-disjoint \mathcal{P}.

We will construct an involution $\pi: N \rightarrow N$.

$$
\begin{aligned}
& \text { - } \pi^{2}=\mathrm{id}_{N} . \\
& \\
& \text { - } \pi: \quad{ }^{+\mathcal{P}} \mapsto{ }^{-\mathcal{P}}{ }^{-\mathcal{P}} \mapsto{ }^{+\mathcal{P}}
\end{aligned}
$$

π is simple:

Application of Gessel-Viennot

Domino tiling

Aztec diamond

$$
\# \mathrm{AD}_{n}=2^{n(n+1) / 2}
$$

Domino Tiling \longleftrightarrow Path System

Start on the left. Traverse each domino directly through its center.

Path
System

Place a domino following each path.
The remaining dominoes are forced.

Counting Path Systems

$s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}, \ldots$ Large Schröder numbers: $1,2,6,22,90,394,1806, \ldots$ count the lattice paths from $(0,0)$ to (i, i) :
\# domino tilings $=\#$ path systems

$$
\begin{aligned}
& =\operatorname{det}\left(\begin{array}{ccc}
2 & 6 & 22 \\
6 & 22 & 90 \\
22 & 90 & 394
\end{array}\right) \\
& =2^{6} \quad\left(2^{n(n+1) / 2} \text { in general }\right)
\end{aligned}
$$

Method applies to generalized Aztec pillows.

Aztec Regions

Aztec diamond

generalized Aztec pillows

Perfect Matchings

A (perfect) matching is a selection of edges that pairs all the vertices.

Example:

Algebra Analysis Statistics

Solution: (a perfect matching)

The Dual Graph

Given any region, we can create its dual graph.

Place a vertex in every square; connect vertices whose squares are adjacent.

The dual graph of this region is bipartite.

Correspondence

The Determinant's Little Brother

The determinant of a matrix M :

$$
\operatorname{det} M=\sum_{\sigma \in S_{k}} \operatorname{sign}(\sigma) m_{1, \sigma(1)} m_{2, \sigma(2)} \cdots m_{k, \sigma(k)} .
$$

The permanent of a matrix M :

$$
\begin{aligned}
\operatorname{perm} M= & \sum_{\sigma \in S_{k}} m_{1, \sigma(1)} m_{2, \sigma(2)} \cdots m_{k, \sigma(k)} \\
& \left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)
\end{aligned}
$$

No permanent calculus exists.

Example:
$\operatorname{perm}\left(\begin{array}{ll}7 & 6 \\ 1 & 2\end{array}\right)=7 \cdot 2+6 \cdot 1=20$

Using Permanents

Entry $m_{i j}=\left\{\begin{array}{ll}1 & v_{i} b_{j} \in E(G) \\ 0 & v_{i} b_{j} \notin E(G)\end{array}\right\}$
perm $M=$ Sum of terms of the form

$$
m_{1, \sigma(1)} m_{2, \sigma(2)} \cdots m_{N, \sigma(N)}
$$

$=\#$ of non-zero terms of the form

$$
m_{1, \sigma(1)} m_{2, \sigma(2)} \cdots m_{N, \sigma(N)}
$$

$=\#$ of choices of N non-zero entries in M
$=\#$ of choices of N edges in the dual graph
= \# of perfect matchings in the dual graph

A Kasteleyn-Percus Matrix

Convert the permanent to a determinant.

On a square lattice, the rule is easy to implement.

A toy example:

For a 4×4 Chessboard

$$
\left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 & 1
\end{array}\right)
$$

Comparison of Methods

	$\mathrm{G}-\mathrm{V}$	$\mathrm{K}-\mathrm{P}$
for AD_{n}	$n \times n$	$n(n+1) \times n(n+1)$
	entries need calculation	entries are $0, \pm 1$
in predictable manner.		

Proving a Kasteleyn Result

Theorem (H, 2005). Let G be the dual graph of a nice region. The Kasteleyn-Percus matrix A of G is alternating pseudo-centrosymmetric.

Theorem (H, 2005). Let A be alternating pseudocentrosymmetric with entries in \mathbb{Z}. Then $\operatorname{det} A$ is a sum of two integral squares.

Open Problems

- Calculating the sequence of determinants explicitly. (Goal: closed form)
- Horizontal versus Vertical applications of Gessel-Viennot (Intriguing similarity)
- Learn more about combinatorial properties from matrix theory

Thanks!

I am: Christopher Hanusa

http://www.math.binghamton.edu/chanusa/

Additional reading:

Gessel-Viennot:
Lattice Paths and Determinants, by Martin Aigner

Kasteleyn-Percus:
Kasteleyn Cokernels, by Greg Kuperberg
Problems in Matching Theory:
Enumeration of Matchings: Problems and Progress, by James Propp

Orientations

