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Determinants
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Permutation expansion of the determinant:
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Recall: A permutation o is a member of the sym-
metric group on n letters if {i}1<;<n, = {0(?) }1<i<n-

Recall: The sign sgn(o) of a permutation o is
(—1) to the number of transpositions that it takes
to make up o.



Have title slide on projector.

Thanks for coming. Today I'm going to talk about matrix operations
and special types of matrices and how they relate to the combinatorics
I do. My goal by the end of the talk is threefold — to introduce you to
at least one new matrix operation, at least one new type of matrix, and
to show you how these ideas come up in matching theory.

Put “Determinants” slide on projector.

wWe’'ll start off with something everyone is familiar with, determinants.
When you think of determinants, you probably think back to linear al-
gebra and the definition of the determinant as an expansion about rows
or columns — basically some sort of recursive definition where we take
an n X n determinant and break it inton n—1 xn — 1 determinants.

As combinatorialists, we carry out this recursion to its end, where we
end up with a sum over all products of n entries that cover each row
and each column exactly once. The way we write this is as a sum in
terms of permutations.

Remember that a permutation is a way to take a function of the entries
1 to n and rearrange them so that each number appears once.



A Determinant Calculus
det AB = det Adet B
det A =det LU = [[}_q ¥

Dodgson’s Condensation:

det A - det A7" = det A} - det A? — det A} - det A}

_ det A} det A7 1,n
det A = det ( detA,i det A7 ) /det A7)
Example:
1 2 6
det| 2 6 22 :det<5862>/6=8
6 22 90

See Advanced Determinant Calculus by Christian
Krattenthaler — arXivimath.CO /0503507



Put Slide “A Determinant Calculus’” on projector.

We like determinants because they satisfy nice properties (or the “deter-
minant calculus” is nice). They have properties like, which when com-
bined with the nice decomposition of a matrix in its LU-decomposition
gives a fast way to calculate it.

Also, we can use a sheaky rule called condensation, invented by Charles
Dodgson aka Lewis Carroll in 1866. It is a way to break down a large
determinant into many smaller determinants.

Write on board I = {i1,...,ix} C [n], J = {j1,...,4x} C [n], AL, draw
picture of n x n matrix and strike out rows ii,...,t, columns ji,..., Jk.

Define two sets of k£ integers that are subsets of the integers between
1 and n. Define the notation Ag to be the matrix where we strike
rows ¢ and columns 3 from A. What condensation says is that we can
replace the computation of an n x n determinant with fourn—1xn—1
determinants and one n — 2 x n — 2 determinant; compare this with the
previous way to expand the determinant about rows/columns. Here is an
example of how we could use condensation to calculate the determinant
of a 3 x 3 matrix.

Go through the example of how we could use condensation.

If you would like to learn more advanced methods in determinantal cal-
culus, see the article by Christian Krattenthaler.



Permanents
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Domino Tilings

Question: How many ways are there to completely
cover a chessboard with dominoes? (2x1 or 1 x2
rectangles)

Answer:

New Question: How can we count how many ways
there are to completely cover a chessboard with
dominoes?

Answer:. Use the dual graph.



Put Slide “Permanents’” on projector.

Compare determinants to an apparently more simple matrix operation,
the permanent. It's just like the determinant in that you take the sum
over all permutations of a product of n entries of the matrix but with
no sign term stuck in.

Permanents do not have a nice Permanent Calculus. In particular, they
do not satisfy perm AB = perm Aperm B. (Notice that if we had this,
then we could use the LU decomposition of a matrix to calculate the
permanent.

Here is an example.

Whereas computing the determinant of a matrix can be done in poly-
nomial time (using Gauss-Jordan elimination (row echelon form)), com-
puting the permanent of a matrix with only 0 —1 entries is #P complete
(the time to enumerate solutions to existence problems in NP), which
is stronger than NP-complete.

So why do I even bring up permanents? Because the permanent is indeed
a simpler formula, it does appear; it has appeared in my own studies.
Let me explain how.

Put Slide “Domino Tilings” on projector.

We're going to talk about domino tilings of regions. The idea you should
have in your head is of a chessboard that we want to cover completely
with 32 non-overlapping dominoes. We call these dominoes tiles, the
chessboard itself a region, and any collection of 32 dominoes we call a
tiling of the region.

So a question we can ask of this game is “How many ways are there to
completely cover a chessboard with dominoes?”

Depending on how many people have seen the presentation before, play
the guessing game.

Think in your head of what you think the answer to this question should
be. How many people think that there are more than 10 possible tilings?
1007 1,0007 10,0007 100,0007 1,000,0007 10,000,0007

The correct answer is 12,988,816. (I just realized that this is very close
to my UW student ID number!)

Fill in answer.

We’'ve got an answer, but then we need to ask how we might actually
calculate this number not using brute force methods.

We'll be using a construction called the dual graph.



Dual Graph

A graph G = (V,E): V are the vertices, E are the
edges.

A dual graph: Given a region, place a vertex v in
every square, and place an edge e = vqvo if square
v1 IS adjacent to wvo.

A bipartite graph: Dblack vertex set V and white
vertex set W; no edges between vertices of the
same color.

A perfect matching of a graph G: choice of edges
e1,---,en that cover each of the 2n vertices.

Domino Tilings

0

Perfect Matchings



Put Slide “Dual Graph” on projector.

To review, the idea of a graph is one of abstracting connections of
related objects, like roads connecting cities. We have a set of points, or
vertices, where two vertices can be connected by edges.

The idea of a dual graph of a region is easiest to think of as a picture.
Let's consider a mini-chessboard example of a 4 x 4 square.

Draw 4 x 4 square on blackboard.

We place a vertex in the center of every square, and connect two vertices
with an edge if the two squares that they correspond to are adjacent.
Just like in the chessboard itself, we can give the vertices colors — in
this example the dual graph has 8 black and 8 white vertices.

Notice that no black vertex is connected to a black vertex or a white
vertex to a white vertex. This is the idea of a bipartite graph — that
we can break the vertices into two sets and there are no edges between
vertices of the same color.

The last definition we need for now is of a perfect matching. If there
are 2n vertices, we need to pick n edges so that every vertex is covered
by some edge.

Show a perfect matching on the 4 x 4 example.

The key observation that we can make is that for every domino tiling of
a region, there is a perfect matching of the dual graph and vice versa.

Show the correspondence on the board example, using perfect matching.

So that means that instead of counting domino tilings of a region, we
can count perfect matchings of a dual graph, and this is where the
permanent comes in.



Counting Perfect Matchings
(Kasteleyn)

Given a bipartite graph, create a matrix A:

- 1 if v;w; is an edge
“ | 0 if y;w; is not an edge

Non-zero term in permutation expansion of perm A
n Non-zero entries in A covering each row, column

Assignment of n edges covering each vertex.

perm A # Perfect matchings of the graph

# Domino tilings of the region



4 x 4 Permanent Example
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perm A = 36



Put Slide “Counting Perfect Matchings” on projector.

The following method was used in the early 1960’'s by a physicist named
Kasteleyn to find a formula for the number of matchings in a rectangular
grid like our chessboard.

We restrict ourselves to the case when the dual graph is bipartite. This
covers most enumeration problems that combinatorialists consider at
this time. If there is a perfect matching of the dual graph, then there
must be the same number of black vertices as white vertices. So label
the black vertices v1 through v, and label the white vertices w; through
Wy

We create an n x n matrix A. Let entry a;; of A be 1 if there is an
edge between v; and w;, and O if there is not. Consider the permutation
expansion of the permanant that we talked about earlier. What does a
non-zero entry correspond to?

Remember that this is a collection of n entries of the matrix that covers
each row and each column. If this choice of n entries has a non-zero
product, then they are all 1's. Going back to the combinatorial interpre-
tation of the matrix, this means there is an edge between v; and w,;
for all ¢, or in other words that there are n edges that completely cover
all the vertices.

This means that taking the permanent of the matrix gives exactly the
number of perfect matchings of the dual graph. Which by our previous
correspondence implies that we can count the number of tilings of a
region by taking the permanent of a matrix.

Put Slide “4 x 4 Permanent Example” on projector.



Back to De Terminants
(Percus)

Permanent — Determinants?

On a square grid, the rule is simple.




4 x 4 Determinant Example

0 0 0)
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O
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det A' = 36



Put Slide “Back to De Terminants” on projector.

Now, we already decided that determanants are much nicer than perma-
nents. What goes wrong in terms of counting our matchings if we take
a determinant? Terms cancel. Is there some way we can put signs into
the matrix to turn the permanent into a determinant?

I wouldn't be asking this question of you if there weren’t. In terms of a
graph on a square grid, the rule for placing signs was introduces in 1963
by a physicist named Percus. It's actually quite simple.

Put Slide “4 x 4 Determinant Example” on projector.

The resulting matrix is called a Kasteleyn-Percus matrix, and here is our
modified example.



Pfaffians

Given a 2n x 2n skew-symmetric matrix B (BT = -B)
the Pfaffian of B, Pf(B) is defined to be

> SIN(BIbsy 1 b+ iy i
3

where § is some pairwise partition of {1,...,2n}

into n pairs {(41,751),---, (in,Jn)}
and Sgn(ﬁ) — Sgn(i1)j17i27"' ,in,jn) (6 SQ’n)

A matrix operation that works on all graphs
(not just bipartite graphs).

Given G = (V, E), define a matrix B.
Put an arbitrary direction on the edges.

1 if vy; > v; is an edge
bijj =4¢ —1 if v; > v; is an edge
O otherwise

Pf (B) counts the number of matchings of G.

_ , . O A
Bipartite graph vyields ( AT o )

10



Pfaffian Properties

Let B be 2n x 2n skew-symmetric, C be 2n X 2n.

[Pf(B)]° = det(B)
Pf(CBCT) = det(C)Pf(B)

Pf < o ) = Pf(A;)Pf (A)

0 A — ¢ _1yn(n—-1)/2
Pf(_AT O>_( 1) det(A)

11



It's time for me to start living up to my goals I stated at the beginning
of the talk.

Put Slide “Pfaffians” on projector.

Even if you've seen the determinant and the permanent before, it's
unlikely you've come across the Pfaffian before. This permanent result
of Kasteleyn was actually first formulated as a Pfaffian.

What is a Pfaffian? How does it work?

Draw a matrix on the board, highlighting entry (1,2), and motioning
that rows 1,2 and columns 1,2 would not be used.

A Pfaffian acts on a 2n x 2n matrix. It takes a set of n entries out of
the matrix so that no entry is used more than once. For example, if you
choose entry (1,2), you would not include any other entries from rows
1 or 2 or from columns 1 or 2

Even when graphs are not bipartite, we can still calculate its number of
perfect matchings using a Pfaffian.

Here you go. Ignoring the sign for a minute, notice that this is plausible
for counting matchings. We are checking to see if some set of n edges
exists, and we do not count a vertex twice.

In the case of a bipartite graph, the ordering of black vertices then white
vertices yields [[0, A],[AT,0]], where A is the Kasteleyn-Percus matrix
with an arbitrary sign on each entry.

Put Slide “Pfaffian Properties’” on projector.

What should you take away from my telling you about Pfaffians? When
you hear Pfaffian, you should think ‘square-root of determinant”. This
is because if we square the Pfaffian, we get the determinant of the
matrix.

These have actually been studied since the early 1800's, and were named
after the German mathematician named Pfaff, who worked on first-order
PDEs.

This is the end of the diversion to Pfaffians.



4 x 4 Determinant Example
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det A’ = 36
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Pattern Hunting

0
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0
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Put Slide “4 x 4 Determinant Example” on projector.

Let me go back to that Kasteleyn-Percus matrix in our example. If
you stare at anything for a long enough period of time, patterns start
to appear. You may be hallucinating, but sometimes there actually are
pattern.

For example, look at this K-P matrix. There are 1's in some positions
and -1's in others; is there a pattern? What do you notice?

(wait for response?)

Anything else? Sure there's a simple pattern in the -1's. And the matrix
is not symmetric, but it is rotationally symmetric (by a rotation of 180
degrees)

In general, the pattern of where the -1's appear is a tad more mysterious.
I'm going to need to rearrange the rows and columns suggestively.

Put Slide “Pattern Hunting’ on projector.

We might start to see that when we rotate the matrix 180 degrees NOW,
certain values of the matrix switch sign. Which ones?



Alternating Centrosymmetric
Matrices

A is alternating centrosymmetric if the entries of
A satisfy Qi j = (_1)i+ja’n—|—1—i,n—|—l—j'

Another way to say this is A = KAK, where

0 0O 1
( 1 o)
. 5 1
K = —1
0 1
\ -1 o0 ¥,
Example:
1 2 3 4
. 5 6 8 9
A= 9 -8 6 -5
—4 3 =2 1

15



I had to make up a name for this type of matrix, since I couldn’t find it
in the literature anywhere. I used as my model the type of matrix called
a centrosymmetric matrix.

The conditions on matrices look similar, but one might think less con-
fusing. As an example, you can see here:

They also satisfy lots of nice properties.

Centrosymmetric matrices come up in many various applications, so 1
wanted to say something briefly about them.



Centrosymmetric Matrices

A is centrosymmetric if the entries of A satisfy

Aj.5 — Apn4+1—in+1—j-

Another way to say thisis A = JAJ, where

2o .. o

IS the exchange matrix.

Example:

OO
W oooN
N O O W
= OO b

16



Centrosymmetric Matrices

Centrosymmetric matrices have the form
A — B CJ
— \ JC JBJ ]’
which has the same determinant as the matrix
A — ( B+ C CJ ) |

0 J(B-C)J

All eigenvectors v of A are either

symmetric (v = Jv) or
anti-symmetric (v = —Jv).

17



Centrosymmetric Matrices

Applications of Centrosymmetric Matrices
e Wavelets / Signal Processing

e Numerical methods for PDE

— Radial Basis Function
(Chen, Tanaka)

— (Harmonic) Differential Quadrature
(Chen, He, Zhong)

e Least Squares (Generalized Centrosymmetric)

18



I wish I understood the following applications of centrosymmetric matri-
ces better.

Wavelets: When you are constructing the orthonormal wavelet basis,
centrosymmetric matrices come up often. (article by Zhong-Yun Liu)

Numerical Methods for PDE: Noticing that key matrices are centrosym-
metric allows computation effort to be reduced by 75%. This is because
it simplifies the calculations of determinants, inverses, and eigenvalues.

The least-squares part is really interesting. See paper by Hsin-Chu Chen,
Generalized Reflexive Matrices: Special Properties and Applications. It
has a great example of how to reduce a least squares problem to smaller
dimension.



Simplifying Determinants

K> = upper-right quarter-matrix of K
Alternating Centrosymmetric matrices have the form
B CK»
A=\ g-l¢ _Kk-1BK
2 2 2
which has the same determinant as the matrix

Ay — [ B—iC CK>
0 —K;'(B+iC)Ky )"

Theorem. The determinant of a 2k x 2k alternat-
ing centrosymmetric matrix is (up to sign) a sum
of two squares.

(—1)* det(B + iC) det(B — iC)
(—1)F (% 4+ y?)

det A

19



Sum of Squares Example

1 2 3 4
| 5 6 8 o9
A=1 9 8 6 -5
4 3 -2 1
_ 1—4i 2+43i 1+4i 23
detA_det(s—gz' 6—|—87L>det<5—|—9z’ 6—8z’>

= (1 —134)(1 + 13¢) = 12 4+ 132 = 170.

20



Stuff here

I wanted to give you a flavor of the type of proof that we use when
proving this sum of squares formula, but it was too boring for me to
say in front of an audience. It's basically just matrix manipulation to
mold A into block diagonal form, where the two blocks have determinant
(B +iC) and (=1)*(B —iC).



Revisiting Jockusch

A 2-even-symmetric graph is a graph with a sym-
metry of 180 degrees and such that the length of
a path between a vertex and its antipode is even.

Theorem (Jockusch). The number of perfect
matchings of a 2-even symmetric graph is a sum
of two squares.

Theorem (H, 2004). If G is a graph that can be
embedded symmetrically into the square grid with
its point of rotation the origin, then its Kasteleyn
matrix is alternating centrosymmetric.

Corollary (H, 2004). If G is a graph that can be
embedded symmetrically into the square grid, the
number of perfect matchings of G is a sum of two
squares.

(Should be more general.)

21



Talk about these theorems.

The key is again noting that the inherent structure in a centrosymmetric
matrix allows us to simplify calculations and gives us nice results.



Cycle Systems

Given a graph G, a cycle system is a union of
vertex-disjoint cycles.
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