1. CALCULUS

(1) Question 1.
(a) Calculate $\frac{d}{d x}\left(c x^{c}+c^{2} x^{-c}\right)$, where c is a non-zero constant.
(b) Determine y^{\prime} where $y=\frac{1}{\sqrt{2-3 x}}$.
(c) Let $f(r)=\left(r^{3}+1\right)\left(-5-r^{4}\right)$. Calculate $f^{\prime}(r)$.
(2) This problem deals with the following function:

$$
f(x)=\frac{4(x+1)(x-2)}{(x-2)(x-3)^{2}}
$$

- Calculate all right-hand and left-hand limits of $f(x)$ at its vertical asymptotes.
- Does this function have a horizontal asymptote? Verify and explain.
(3) Given $\epsilon=0.1$, determine $\delta>0$ such that

$$
|G(x)-7|<\epsilon \text { whenever } 0<|x-3|<\delta
$$

2. Combinatorics

Let n be a positive integer. A lecture hall partition of length n is a partition $\lambda=\left(\lambda_{n}, \ldots, \lambda_{2}, \lambda_{1}\right)$ (where one or more λ_{i} may be zero) such that

$$
0 \leq \frac{\lambda_{1}}{1} \leq \frac{\lambda_{2}}{2} \leq \cdots \leq \frac{\lambda_{n}}{n}
$$

Given $w=\left(w_{1}, w_{2}, \ldots, w_{n}\right) \in \tilde{C}_{n} / C_{n}$, create the partition $\lambda=\left(\lambda_{n}, \ldots, \lambda_{2}, \lambda_{1}\right)$ with

$$
\lambda_{j}=\sum_{i=1}^{j} I_{i, j}
$$

This construction is a bijection between minimal length coset representatives of \tilde{C}_{n} / C_{n} and lecture hall partitions of length n.

The runners corresponding to $i=1,2$, and 3 are runners 6,5 , and 3 ; $\lambda_{R(1)}=\lambda_{1}=12, \lambda_{R(2)}=\lambda_{2}=12, \lambda_{R(3)}=\lambda_{5}=7, \lambda_{r(1)}=\lambda_{6}=5$, $\lambda_{r(2)}=\lambda_{7}=5, \lambda_{r(3)}=\lambda_{5}=7$, and $\sigma_{\lambda}=(3,1,1)$. Therefore, $l\left(W\left(\sigma_{\lambda}\right)\right)=$ $3+(12-5)+(12-5)+(7-7)+0 \cdot 4=17$.

