A combinatorial introduction to reflection groups

Christopher R. H. Hanusa Queens College, CUNY

people.qc.cuny.edu/chanusa > Talks

Groups

Today, we will discuss the combinatorics of groups.

- Made up of a set of elements $W=\left\{w_{1}, w_{2}, \ldots\right\}$.
- Multiplication of two elements $w_{1} w_{2}$ stays in the group.
- ALTHOUGH, it might not be the case that $w_{1} w_{2}=w_{2} w_{1}$.
- There is an identity element (id) \& Every element has an inverse.
- Group elements take on the role of both objects and functions.
(Non-zero real numbers)
- We can multiply a and b
- It is the case that $a b=b a$
- 1 is the identity: $a \cdot 1=a$
- The inverse of a is $1 / a$.
(Invertible $n \times n$ matrices.)
- We can multiply A and B
- Rarely is $A B=B A$
- I_{n} is the identity: $A \cdot I_{n}=A$
- The inverse of A exists: A^{-1}.

Reflection Groups

More specifically, we will discuss reflection groups W.

- W is generated by a set of generators $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$.
- Every $w \in W$ can be written as a product of generators.
- Along with a set of relations.
- These are rules to convert between expressions.
- $s_{i}^{2}=$ id. -and- $\left(s_{i} s_{j}\right)^{\text {power }}=$ id.

For example, $w=s_{3} s_{2} s_{1} s_{1} s_{2} s_{4}=s_{3} s_{2}$ id $s_{2} s_{4}=s_{3}$ ids $s_{4}=s_{3} s_{4}$

Why should we use these rules?

Pi in the cold of winter

Behold: The perfect wallpaper design for math majors:

To see the reflections, we insert some hyperplanes that act as mirrors.

- In two dimensions, a hyperplane is simply a line.
- In three dimensions, a hyperplane is a plane.

Reflection Groups

- These regions can be thought of as group elements. Place id.
- The action of multiplying (on the left) by a generator s corresponds to a reflection across a hyperplane $H_{s} . \quad\left(s^{2}=\mathrm{id}\right)$

We see:

- $s t s=t s t \leftrightarrow \quad s t s t s t=i d$ Shows $(s t)^{3}=$ id is natural.
- Our group has six elements: $\{i d, s, t, s t, t s, s t s\}$.
- This is the group of symmetries of a hexagon.

Reflection Groups

- When the angle between H_{s} and H_{t} is $\frac{\pi}{n}$, relation is $(s t)^{n}=\mathrm{id}$.
- The size of the group is $|S|=2 n$.
- All finite reflection groups in the plane are these dihedral groups.
- Two directions: infinite and higher dimensional.

Permutations are a group

An n-permutation is a permutation of $\{1,2, \ldots, n\}$.

- Write in one-line notation or use a string diagram:

31425

n-Permutations form the Symmetric group S_{n}.

- We can multiply permutations.
- The identity permutation is id $=1234 \ldots$. .
- Inverse permutation: Flip the string diagram upside down!

Permutations as a reflection group

A special type of permutation is an adjacent transposition, switching two adjacent entries.

- Write $s_{i}:(i) \leftrightarrow(i+1)$.

$$
\text { (e.g. } s_{3}=12435 \text {). }
$$

\star Every n-permutation is a product of adjacent transpositions.

- (Construct any string diagram through individual twists.)
- Example. Write 31425 as $s_{1} s_{3} s_{2}$.
- $S=\left\{s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ are generators of S_{n}.

A reflection group also has relations:

- First, $s_{i}^{2}=$ id.

12345	12345
21345	13245
23145	31245
$\mathbf{3 2 1 4 5}$	32145

- Consecutive generators don't commute: $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
- Non-consecutive generators DO commute: $s_{i} s_{j}=s_{j} s_{i}$

Visualizing symmetric groups

We have already seen S_{3}, generated by $\left\{s_{1}, s_{2}\right\}$:

We can visualize S_{4} as a permutohedron, generated by $\left\{s_{1}, s_{2}, s_{3}\right\}$. sourceforge.net/apps/trac/groupexplorer/wiki/The First Five Symmetric Groups/

They also give a way to see $S_{5} \ldots$

Higher-dimension symmetric groups

How can we "see" a reflection group in higher dimensions?
The relation $\left(s_{i} s_{j}\right)^{m}$ determines the angle between hyperplanes H_{i}, H_{j} :

- $\left(s_{i} s_{j}\right)^{2}=\mathrm{id} \longleftrightarrow \theta\left(H_{i}, H_{j}\right)=\pi / 2$
- $\left(s_{i} s_{j}\right)^{3}=\mathrm{id} \longleftrightarrow \theta\left(H_{i}, H_{j}\right)=\pi / 3$

For S_{6}, we expect an angle of 60° between the hyperplane pairs

$$
\left(H_{1}, H_{2}\right),\left(H_{2}, H_{3}\right),\left(H_{3}, H_{4}\right), \text { and }\left(H_{4}, H_{5}\right)
$$

Every other pair will be perpendicular.

All finite reflection groups

Or see with a Coxeter diagram:

- Vertices: One for every generator i
- Edges: Between i and j when $m_{i, j} \geq 3$. Label edges with $m_{i, j}$ when ≥ 4.

Dihedral groups

Generators: s and t. Relation: $(s t)^{m}=\mathrm{id}$

Symmetric groups:

Wallpaper Groups

The art of M. C. Escher plays upon symmetries in the plane.
An isometry of the plane is a transformation that preserves distance. Think: translations, rotations, reflections, glide reflections.

A wallpaper group is a group of isometries of the plane with two independent translations. Some are also reflection groups:

Infinite Reflection Groups

Constructing an infinite reflection group: the affine permutations \widetilde{S}_{n}.

- Add a new generator s_{0} and a new affine hyperplane H_{0}.

Elements generated by $\left\{s_{0}, s_{1}, s_{2}\right\}$ correspond to alcoves here.

Combinatorics of affine permutations

Many ways to reference elements in \widetilde{S}_{n}.

- Geometry. Point to the alcove.
- Alcove coordinates. Keep track of how many hyperplanes of each type you have crossed to get to your alcove.
- Word. Write the element as a (short) product of generators.
- One-line notation. Similar to writing finite permutations as 312 .

Coordinates:

Word: $s_{0} s_{1} s_{2} s_{1} s_{0}$
Permutation:
$(-3,2,7)$

- Others! Lattice path, order ideal, etc.

Affine permutations

(Finite) n-Permutations S_{n}

- Visually:

Affine n-Permutations \widetilde{S}_{n}

- Generators: $\left\{\mathrm{s}_{0}, \mathrm{~s}_{1}, \ldots, \mathrm{~s}_{n-1}\right\}$
- s_{0} has a braid relation with s_{1} and s_{n-1}
- How does this impact one-line notation?
- Perhaps interchanges 1 and n ?
- Not quite! (Would add a relation.)

Window notation

Affine n-Permutations $\widetilde{S}_{n} \quad$ (G. Lusztig 1983, H. Eriksson, 1994) Write an element $\widetilde{w} \in \widetilde{S}_{n}$ in 1 -line notation as a permutation of \mathbb{Z}.
Generators transpose infinitely many pairs of entries:

$$
\left.s_{i}:(\mathbf{i}) \leftrightarrow \mathbf{(i + 1}\right) \ldots(n+i) \leftrightarrow(n+i+1) \ldots(-n+i) \leftrightarrow(-n+i+1) \ldots
$$

$\operatorname{In} \widetilde{S}_{4}$,	$\cdots w(-4)$	$w(-3)$	$w(-2)$	$w(-1)$	$w(0)$	$w(1)$	$w(2)$	$w(3)$	$w(4)$	$w(5)$	$w(6)$	$w(7)$	$w(8)$	$w(9) \cdots$
\boldsymbol{s}_{1}	\cdots	-4	-2	-3	-1	0	2	1	3	4	6	5	7	8
\boldsymbol{s}_{0}	\ldots	-3	-4	-2	-1	1	0	2	3	5	4	6	7	9
	$\boldsymbol{s}_{1} \boldsymbol{s}_{0}$	\ldots	-2	-4	-3	-1	2	0	1	3	6	4	5	7

Symmetry: Can think of as integers wrapped around a cylinder.
\widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(n)] . \quad s_{1} s_{0}=[0,1,3,6]$

An abacus model for affine permutations

(James and Kerber, 1981) Given an affine permutation [w_{1}, \ldots, w_{n}],

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Create an abacus where each runner has a lowest bead at w_{i}.

- Generators act nicely.
- s_{i} interchanges runners $i \leftrightarrow i+1 .\left(s_{1}: 1 \leftrightarrow 2\right)$
- s_{0} interchanges runners 1 and n (with shifts) $\left(s_{0}: 1 \stackrel{\text { shift }}{\leftrightarrow} 4\right)$

Core partitions

For an integer partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ drawn as a Young diagram,

The hook length of a box is \# boxes below and to the right.

10	9	6	5	2	1
7	6	3	2		
6	5	2	1		
3	2				
2	1				

An n-core is a partition with no boxes of hook length dividing n.
Example. λ is a 4 -core, 8 -core, 11 -core, 12-core, etc.

$$
\lambda \text { is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core. }
$$

Core partition interpretation for affine permutations

Bijection: $\{$ abaci $\} \longleftrightarrow\{n$-cores $\}$
Rule: Read the boundary steps of λ from the abacus:

- A bead \leftrightarrow vertical step
- A gap \leftrightarrow horizontal step

Fact: This is a bijection!

Action of generators on the core partition

- Label the boxes of λ with residues.
- s_{i} acts by adding or removing boxes with residue i.

Example. $\lambda=(5,3,3,1,1)$

- has removable 0 boxes
- has addable 1, 2, 3 boxes.

Idea: We can use this to figure out a word for w.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|ll}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0
\end{array} \quad \xrightarrow{S_{0}} \quad \begin{array}{|c|c|c|ccc|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 0
\end{array} \\
& S_{1} \downarrow \\
& \begin{array}{|l|l|l|l|l|l|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\cline { 1 - 1 } & 1 & 2 & 3 & 0 & 1 \\
\cline { 1 - 2 } & 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|ll|}
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline 2 & 3 & 0 & 1 & 2 & 3 \\
\hline 1 & 2 & 3 & 0 & 1 & 2 \\
\hline 0 & 1 & 2 & 3 & 0 & 1 \\
\hline 3 & 0 & 1 & 2 & 3 & 0 \\
\hline
\end{array}
\end{aligned}
$$

Finding a word for an affine permutation.

Example: The word in S_{4} corresponding to $\lambda=(6,4,4,2,2)$:
$s_{1} S_{0} S_{2} S_{1} S_{3} S_{2} S_{0} S_{3} S_{1} S_{0}$

0	1	2	3	0	1								
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1								
3	0	1	2	3	0	$\quad \xrightarrow{S_{1}} \quad$	0	1	2	3	0	1	
:---	:---	:---	:---	:---	:---	:---							
3	0	1	2	3	0								
2	3	0	1	2	3								
1	2	3	0	1	2								
0	1	2	3	0	1		$\quad \xrightarrow{S_{0}}$						

0	1	2	3	0	1		0	1	2	3	0	1		0	1	2			0	1		0	1	2	3	0	1		0	1	2	3	0	1
3	0	1	2	3	0		3	0	1	2	3	0		3	0	1			3	0		3	0	1	2	3	0		3	0	1	2	3	0
2	3	0	1	2	3	$\xrightarrow{S_{0}}$	2	3	0	1	2	3	$\xrightarrow{\mathrm{S}_{3}}$	2	3	0			2	3	$\xrightarrow{S_{1}}$	2	3	0	1	2	3	$\xrightarrow{S_{0}}$	2	3	0	1	2	3
1	2	3	0	1	2		1	2	3	0	1	2		1	2	3			1	2		1	2	3	0	1	2		1	2	3	0	1	2
0	1	2	3	0	1		0	1	2	3	0	1		0	1	2			0	1		0	1	2	3	0	1		0	1	2	3	0	1
3	0	1	2	3	0		3	0	1	2	3	0		3	0				3	0		3	0	1	2	3	0		3	0	1	2	3	

The bijection between cores and alcoves

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5 .
How many simultaneous $4 / 5$-cores? 14 .
How many simultaneous $5 / 6$-cores? 42.
How many simultaneous $n /(n+1)$-cores? C_{n} !
Jaclyn Anderson proved that the number of s / t-cores is $\frac{1}{s+t}\binom{s+t}{s}$.
The number of $3 / 7$-cores is $\frac{1}{10}\binom{10}{3}=\frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=12$.
Fishel-Vazirani proved an alcove interpretation of $n /(m n+1)$-cores.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions.
- Joint with Brant Jones, James Madison University.

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions. ar χ iv:1105.5333
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- Joint with Rishi Nath, York College.
- We found \& proved some impressive numerical conjectures.
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).

6 -cores of 22

8 -cores of 22

Research Questions

\star Can we extend combinatorial interps to other reflection groups?

- Yes! Involves self-conjugate partitions. ar χ iv:1105.5333
- Joint with Brant Jones, James Madison University.
\star What numerical properties do self-conjugate core partitions have?
- Joint with Rishi Nath, York College.
ar χ iv:1201.6629
- We found \& proved some impressive numerical conjectures.
- There are more (s.c. $t+2$-cores of n) than (s.c. t-cores of n).
\star What is the average size of an s / t-core partition?
- In progress. We "know" the answer, but we have to prove it!
- Working with Drew Armstrong, University of Miami.

Thank you!

Slides available: people.qc.cuny.edu/chanusa $>$ Talks Interact: people.qc.cuny.edu/chanusa $>$ Animations
M. A. Armstrong.

Groups and symmetry. Springer, 1988.
Easy-to-read introduction to groups, (esp. reflection)
James E. Humphreys
Reflection groups and Coxeter groups. Cambridge, 1990. More advanced and the reference for reflection groups.

固 http://www.mcescher.com/
http://www.math.ubc.ca/~cass/coxeter/crm1.html http://sourceforge.net/apps/trac/groupexplorer/wiki/

The First Five Symmetric Groups/

