Self-conjugate core partitions: It's storytime!

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Rishi Nath, York College, CUNY

$$
\text { people.qc.cuny.edu/chanusa }>\text { Talks }
$$

Meet Mr. Core Partition

Coxeter groups: t-cores biject with min. wt. coset reps in $\widetilde{A}_{t} / A_{t}$. (action)

Let $c_{t}(n)$ be the number of t-core partitions of n.

Representation Theory: t-cores label the t-blocks of irreducible characters of S_{n}.

Mock theta

 functionsThe Young diagram of $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ has λ_{i} boxes in row i.
The hook length of a box $=\#$ boxes below $+\#$ boxes to right + box
λ is a t-core if no boxes have hook length t.
Example: Mr. Core is not 3-, 5-, 6-core; is a 4-, 8-, 11-core.

Meet Mrs. Core Partition

Coxeter groups: s-c t-cores biject with min. wt. coset reps in $\widetilde{C}_{t} / C_{t}$.
(Hanusa, Jones '12)

Let $s c_{t}(n)$ be the number of self-conjugate t-core partitions of n.

Representation Theory:
s-c t-cores label defect zero t-blocks of A_{n} that arise from splitting t-blocks of S_{n}.
(Ask Rishi)

A partition is self-conjugate if it is symmetric about its main diagonal.
In this talk: Understanding self-conjugate core partitions.

Beauty contest

Self-conjugate core partitions

Generating function:
(Olsson, 1990) $\sum_{n \geq 0} s c_{t}(n) q^{n}=$
$\begin{cases}\prod_{n \geq 1} \frac{\left(1+q^{2 n-1}\right)\left(1-q^{2 t n}\right)^{(t-1) / 2}}{1+q^{t(2 n-1)}} & t \text { odd } \\ \prod_{n \geq 1}^{n}\left(1-q^{2 t n}\right)^{t / 2}\left(1+q^{2 n-1}\right) & t \text { even }\end{cases}$
Positivity? \checkmark (Baldwin et al, '06)
$s c_{t}(n)>0$ fot $t=8, \geq 10, n>2$.
Monotonicity?
What else can we say?

Understanding Monotonicity

Self-conjugate partitions of 22

			${ }^{1{ }^{10}}$		梼	貱	\#	$\#$	Total
6-core	\times	\times	\checkmark	\times	\times	\checkmark	\times	\times	2
7-core	\times	\times	\times	\times	\checkmark	\times	\times	\times	1
8-core	\times	\checkmark	\times	\checkmark	\checkmark	\times	\checkmark	\times	4
9-core	\times	\times	\checkmark	\checkmark	\times	\times	\times	\times	2
10-core	\checkmark	8							
11-core	\times	\times	\times	\times	\times	\checkmark	\times	\checkmark	2
12-core	\checkmark	8							
13-core	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	\checkmark	6
14-core	\checkmark	8							
15-core	\checkmark	\checkmark	\checkmark	\times	\checkmark	\checkmark	\checkmark	\checkmark	7

- Much variability!
- Self-conjugate cores do not satisfy $s c_{t+1}(n) \geq s c_{t}(n)$.
- Most partitions are t-cores (t large)
- Self-conjugate cores might satisfy $s c_{t+2}(n) \geq s c_{t}(n)$.

Monotonicity Conjectures \& Theorems

Monotonicity Conjecture. (Stanton '99)
$c_{t+1}(n) \geq c_{t}(n)$ when $4 \leq t \leq n-1$.
Even Monotonicity Conjecture. (Hanusa, Nath '12) $s c_{2 t+2}(n)>s c_{2 t}(n)$ for all $n \geq 20$ and $6 \leq 2 t \leq 2\lfloor n / 4\rfloor-4$
Odd Monotonicity Conjecture.
$s c_{2 t+3}(n)>s c_{2 t+1}(n)$ for all $n \geq 56$ and $9 \leq 2 t+1 \leq n-17$
Some progress:
Theorem. $s c_{2 t+2}(n)>s c_{2 t}(n)$ when $n / 4<2 t \leq 2\lfloor n / 4\rfloor-4$.
And: $s c_{2 t+3}(n)>s c_{2 t+1}(n)$ for all $n \geq 48$ and $n / 3 \leq 2 t+1 \leq n-17$.

Key idea: The t-quotient of λ

We can define the t-core λ^{0} of any partition λ. Successively remove hooks of hooklength t and keep track in λ 's t-quotient.

Key idea: The t-quotient of λ

Since $s c_{t}(n)=s c(n)-n s c_{t}(n)$, we can prove results like:
Proposition. For $n / 3<2 t+1 \leq n / 2$,

$$
s c_{2 t+1}(n)=s c(n)-s c(n-2 t-1)-(t-1) s c(n-4 t-2) .
$$

Proposition. For $n / 4<2 t \leq n / 2$,

$$
s c_{2 t}(n)=s c(n)-t s c(n-4 t) .
$$

Consequence: For $n / 4<2 t \leq n / 2$,

$$
t s c(n-4 t-4)>(t+1) \operatorname{sc}(n-4 t) .
$$

$$
s C_{2 t+2}(n)>s c_{2 t}(n) \quad \longleftrightarrow \quad \text { or instead }
$$

Look Ma, No cores!

Positivity for small t

We found some holes in the literature:

$$
\begin{aligned}
& s c_{2}(n)=0 \text { except when } n \text { triangular. } \\
& s c_{4}(n)=0 \text { when }\left\{\begin{array}{l}
\text { factorization of } 8 \mathbf{n}+\mathbf{5} \text { contains a }(4 k+3) \text {-prime } \\
\text { to an odd power. (Ono, Sze, ' } 97)
\end{array}\right. \\
& s c_{6}(n)=0 \text { when } n \in\{2,12,13,73\} .
\end{aligned}
$$

$$
\begin{aligned}
& s c_{3}(n)=0 \text { except when } n=3 d^{2} \pm 2 d \\
& s C_{5}(n)=0 \text { when }\left\{\begin{array}{l}
\text { factorization of } n \text { contains a }(4 k+3) \text {-prime } \\
\text { to an odd power. (Garvan, Kim, Stanton '90) }
\end{array}\right.
\end{aligned}
$$

$$
s c_{7}(n)=0 \text { when } n=(8 m+1) 4^{k}-2
$$

$$
s c_{9}(n)=0 \text { when } n=\left(4^{k}-10\right) / 3(\text { Baldwin et al }+ \text { Montgomery '06) }
$$

Sums of squares

Theorem. If $n=(8 m+1) 4^{k}-2$ for $m, k>0$, then $s c_{7}(n)=0$.
Proof. (Garvan, Kim, Stanton '90) shows that

$$
s c_{7}(n)=\quad \begin{gathered}
\text { \# triples }\left(x_{1}, x_{2}, x_{3}\right) \text { satisfying } \\
n=7 x_{1}^{2}+2 x_{1}+7 x_{2}^{2}+4 x_{2}+7 x_{3}^{2}+6 x_{3}
\end{gathered}
$$

Consider a minimal n of the above type. After substituting, rewriting:

$$
\begin{aligned}
& 7(8 m+1) 4^{k}=\left(7 x_{1}+1\right)^{2}+\left(7 x_{2}+2\right)^{2}+\left(7 x_{3}+3\right)^{2} \\
\equiv & 0 \text { or } 4 \bmod 8 \quad \uparrow \text { So these are all even. } \uparrow
\end{aligned}
$$

Choosing ($\frac{x_{2}}{2},-\frac{x_{3}+1}{2},-\frac{x_{1}+1}{2}$) gives a smaller n.

Legendre: The only integers NOT sum of 3 squares:

$$
n=(8 m+7) 4^{k}
$$

Here: The only integers NOT sum of 3 squares of diff. residues mod 7 :

$$
n=(56 m+7) 4^{k} .
$$

Unimodality and Asymptotics

We conjecture $s c_{t+2}(n)>s c_{t}(n)$; structure of increase?
Plot Normalized increase for different $n:\left(s c_{t+2}(n)-s c_{t}(n)\right) / s c(n)$

Other peculiarities

Conjecture: There are infinitely many n such that $s c_{9}(n)<s c_{7}(n)$. Includes many (but not all) values of $n \equiv 82 \bmod 128$:
$\{9,18,21,82,114,146,178,210,338,402,466,594,658,722,786,850,978$, $1106,1362,1426,1618,1746,1874,2130,2386,2514,2642,2770,2898,3154,3282$, $3410,3666,3922,4050,4178,4306,4434,4690,4818,4946,5202,5458,5586,5970$, $6226,6482,6738,6994,7250,7506,8018,8274,8530,8786,9042,9298,9554,9810\}$.

Conjecture: For $n \geq 0, s c_{7}(4 n+6)=s c_{7}(n)$.
Conjecture: Let n be a non-negative integer.

1. Suppose $n \geq 49$. Then $s c_{9}(4 n)>3 s c_{9}(n)$.
2. Suppose $n \geq 1$. Then $s c_{9}(4 n+1)>1.9 s c_{9}(n)$.
3. Suppose $n \geq 17$. Then $s c_{9}(4 n+3)>1.9 s c_{9}(n)$.
4. Suppose $n \geq 1$. Then $s c_{9}(4 n+4)>2.6 s c_{9}(n)$.

What's next?

- Core survey
- Coxeter Gp. POV: Fix t, let n vary. Rep. Theory POV: Fix n, let t vary.
- Can they be unified? Can we help each other?
- Gathering sources stage - What do you know?
- Simultaneous core partitions (λ is both an s-core and a t-core)
- Geometrical interpretation of cores:

The bijection between 3-cores and alcoves

Simultaneous core partitions

How many partitions are both 2-cores and 3-cores? 2.

How many partitions are both 3 -cores and 4 -cores? 5 .
How many simultaneous $4 / 5$-cores? 14.
How many simultaneous $5 / 6$-cores? 42.
How many simultaneous $n /(n+1)$-cores? C_{n} !
Jaclyn Anderson proved that the number of s / t-cores is $\frac{1}{s+t}\binom{s+t}{s}$.
The number of $3 / 7$-cores is $\frac{1}{10}\binom{10}{3}=\frac{1}{10} \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}=12$.
Fishel-Vazirani proved an alcove interpretation of $n /(m n+1)$-cores.

What's next?

- Core survey
- Coxeter Gp. POV: Fix t, let n vary. Rep. Theory POV: Fix n, let t vary.
- Can they be unified? Can we help each other?
- Gathering sources - What do you know?
- Simultaneous core partitions (λ is an s-core and a t-core)
- Geometrical interpretation of cores.
- Question: What is the average size of an s / t-core partition?
- In progress (on pause).

We "know" the answer, but we have to prove it!

- Working with Drew Armstrong, University of Miami.

Thank you！

Slides available：people．qc．cuny．edu／chanusa $>$ Talks
Interact：people．qc．cuny．edu／chanusa $>$ Animations
© Gordon James and Adalbert Kerber．
The representation theory of the symmetric group， Addison－Wesley， 1981.

固 Christopher R．H．Hanusa and Rishi Nath．
The number of self－conjugate core partitions．ar $\chi \mathrm{iv}: 1201.6629$
围 Christopher R．H．Hanusa and Brant C．Jones． Abacus models for parabolic quotients of affine Coxeter groups Journal of Algebra．Vol．361，134－162．（2012）ar叉iv：1105．5333

