Voting Methods and Colluding Voters

Christopher Hanusa

Outline

- Voting Methods
- Plurality/Majority and refinements
- Ranked Pairs
- Borda Count
- Let's vote!
- Mathematics of the Borda Count
- Disorderings of Candidates
- Proofs involving Disorderings

Plurality/Majority

Goal: Ensure that the elected candidate has the support of a majority.

Method: Each person gets one vote. The candidate with the most votes wins.

- Two-candidate Runoff.
- Keep the top two candidates
- Hold a runoff election
- Instant Runoff Voting.
- Rank as many candidates as desired.
- Redistribute non-winning votes.

Ranked Pairs

Goal: Elect the candidate who would win each head-to-head election. (A Condorcet winner)
$\begin{array}{lll}A & B & C \\ B & C & A \\ C & A & B\end{array}$

Careful!

$A>B>C>A$

Method: Each person ranks all the candidates.

- Determine who wins between c_{i} and c_{j}.
- Choose the strongest preference and lock it in.
- Ensure no ambiguity is created.
- Example:
$\begin{array}{lll}A & A & C \\ B & C & A \\ C & B & B\end{array}$

Borda Count

Goal: Choose a consensus candidate.

Method: Each person ranks all n candidates.

Allot n points to the top-ranked candidate.

Allot $n-1$ points to the next-top-ranked candidate.
and so on ...

The candidate with the most number of points wins.

Let's vote!

Plurality/Majority: Tally the first preferences.

Winner: \qquad

Instant Runoff: When a candidate is eliminated, redistribute the votes to the next preferences.

Winner:

Ranked Pairs: Determine and lock in strongest head-to-head preferences.

Winner:

Borda Count: Allot [$n, n-1, n-2, \ldots, 1$] points based on preferences; determine point winner.

Winner:

Pros, Cons, and Facts

Plurality Refinements:

Pro: Candidate elected by a majority
Pro: Second preferences expressible

Con: Secondary support may be strong
Fact: Favors candidates with strong ideology

Ranked Pairs and Borda Count:
Pro: (RP) Condorcet winner always elected
Pro: (BC) Tries to maximize voter satisfaction Pro: All preferences influence election

Con: Requires full ranking by voters
Con: Same weight given to each rank
Con: Subject to strategic voting
Fact: Favors consensus building candidates
Fact: Disincentive for candidates to share ideology
Fact: (BC) May not elect candidate favored by majority

Mathematics of the Borda Count

With three candidates, use the scoring rule: [3,2,1]

Voter 1 Voter 2 Voter 3

$1^{\text {st }}$	A	A	B	$\rightarrow 3$
$2^{\text {nd }}$	B	C	C	$\rightarrow 2$
$3^{\text {rd }}$	C	B	A	$\rightarrow 1$

Candidate A: $3+3+1=7$ points

Candidate $\mathrm{B}: 2+1+3=6$ points

Candidate C: $1+2+2=5$ points

Generalization of the Borda Count

In the Borda Count, the scoring rule

$$
[n, n-1, n-2, \ldots, 3,2,1]
$$

becomes the normalized scoring rule

$$
\left[1, \frac{n-2}{n-1}, \frac{n-3}{n-1}, \ldots, \frac{2}{n-1}, \frac{1}{n-1}, 0\right]
$$

Modifying the scoring rule

1999 AL baseball MVP voting:

$$
[14,9,8,7,6,5,4,3,2,1]
$$

which yields
$[1,0.62,0.54,0.46,0.38,0.31,0.23,0.15,0.08,0]$ instead of
$[1,0.89,0.78,0.67,0.56,0.44,0.33,0.22,0.11,0]$
\rightarrow Called positional voting.

A normalized scoring rule is always of the form:

$$
\left[1, x_{n-2}, x_{n-3}, \ldots, x_{1}, 0\right]
$$

with $1 \geq x_{n-2} \geq \cdots \geq x_{1} \geq 0$

Question: If we vary these x 's, can different candidates win with the same votes?

YES!

Consider these candidate preferences of 9 voters:

4 voters 3 voters 2 voters

$1^{\text {st }}$	B	A	A	$\rightarrow 1$
$2^{\text {nd }}$	C	C	B	$\rightarrow x$
$3^{\text {rd }}$	A	B	C	$\rightarrow 0$

Under the scoring rule $[1, x, 0]$,

A receives 5 points.
B receives $4+2 x$ points.
C receives $7 x$ points.

As x varies, the candidate with the highest point total changes.

Everyone wins!

A set of voters' preferences generates a hyperplane arrangement.

Disordering Candidates

We say that m voters can disorder n candidates if there exists a set of preferences such that each of the n candidates can win under some scoring rule.

Such a set of preferences is called a disordering.

Disordering Candidates

We saw that 9 voters can disorder 3 candidates.

Question:

For which values of m and n can m voters disorder n candidates?

Partial answer:

- the minimum m for 3 candidates is $m=9$.
- Some number of voters can disorder 4 candidates.

Disordering Candidates

9 voters can disorder 3 candidates

6 voters can disorder 4 candidates
only 4 voters are necessary to disorder 5 candidates
and 9 candidates can be disordered by 3 voters!

$m \backslash^{n}$	3	4	5	6	7	8	9
3	\times	\times	\times	\times	\times	\times	\cdot
4	\times	\times	\times	\cdot	\cdot	\cdot	\cdot
5	\times	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
6	\times	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
7	\times	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
8	\times	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
9	\cdot						

for larger m and n, m voters can always disorder n candidates

Why?

Analyze the 4-candidate situation:
A scoring rule is now of the form [$1, x, y, 0$], with $1 \geq x \geq y \geq 0$

More degrees of freedom!
A set of voter preferences is now represented by a 3-D hyperplane arrangement over the triangular region

4-candidate example

5-candidate example

Theorem

Claim: A collection of m voters can disorder n candidates whenever $m \geq 3$ and $n \geq 3$, except - when $m=3$ and $n \leq 8$,

- when $n=3$ and $m \leq 8$, and
- when $n=4$ and $m=4,5$.

$m \^{n}$	3	4	5	6	7	8	9	10	11	12
3	\times	\times	\times	\times	\times	\times		.	.	.
4	\times	\times	\times
5	\times
6	\times
7	\times
8	\times
9
10
11	
12	

Proof of Theorem

- $m \neq 2$
- $n \neq 2$
- Prove \times 's
- Create infinite families of disorderings.

Lemma: From special (m, n): more voters Lemma: From special (m, n) : more candidates

- Generate the special disorderings.

$$
\begin{aligned}
& m, n \neq 2 \quad \times \text { 's } \quad \infty \text {-fam special } \\
& \text { Simple Cases }
\end{aligned}
$$

Two voters can disorder no number of candidates

No number of voters can disorder two candidates

$$
m, n \neq 2 \quad \times \text { 's } \quad \infty \text {-fam } \quad \text { special }
$$

A Necessary Condition for Disorderings

What must be true in a disordering?

For candidate c_{1} to be able to win over c_{2} :

For candidate c_{2} to be able to win over c_{1} :

Necessary condition: If two candidates c_{1} and c_{2} are disordered, then there must exist integers j and k such that $R_{j}\left(c_{1}\right)>R_{j}\left(c_{2}\right)$ and $R_{k}\left(c_{1}\right)<R_{k}\left(c_{2}\right)$.

$$
\begin{array}{lll}
m, n \neq 2 & \times \text { 's } & \infty \text {-fam special } \\
\text { Computer Assistance }
\end{array}
$$

- Choose m and n
- Generate all sets of voter preferences.
- Check the necessary condition for each.
- If n.c. satisfied, verify whether disordering.

This condition is not sufficient!
$\begin{array}{cccc}c_{1} & c_{1} & c_{2} & c_{3}\end{array}$
$\begin{array}{cccc}c_{2} & c_{4} & c_{4} & c_{4}\end{array}$
$\begin{array}{cccc}c_{3} & c_{3} & c_{3} & c_{2}\end{array}$
$\begin{array}{cccc}c_{4} & c_{2} & c_{1} & c_{1}\end{array}$

$m, n \neq 2 \quad \times$'s $\quad \infty$-fam special
 A New Disordering from an Old

Whenever m voters disorder n candidates, $m+n$ voters can disorder n candidates as well.

$$
(m, n) \quad \rightarrow \quad(m+n, n)
$$

$$
\begin{aligned}
& m, n \neq 2 \quad \times \text { 's } \quad \infty \text {-fam special } \\
& \text { Splittable Disorderings }
\end{aligned}
$$

Sometimes it is possible to add a candidate to an existing disordering in a simple fashion.

If so, we call the disordering splittable.

Not only can we add one candidate, we can add n^{\prime} candidates.

$m, n \neq 2 \quad \times$'s $\quad \infty$-fam \quad special Generated Disorderings

Thanks!

I am: Christopher Hanusa

 http://qc.edu/~chanusa/
Additional reading:

Electoral Process: ACE Encyclopaedia (UN)
http://aceproject.org/ace-en

Geometry of the Borda Count:
Millions of election outcomes from a single profile,
by Donald Saari

Preprint of this research:
Ensuring every candidate wins under positional voting, available on the above website.

