# Combinatorial interpretations in affine Coxeter groups 

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant C. Jones, James Madison University

## What is a Coxeter group?

A Coxeter group is a group with

- Generators: $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- Relations: $s_{i}^{2}=1, \quad\left(s_{i} s_{j}\right)^{m_{i, j}}=1$ where $m_{i, j} \geq 2$ or $=\infty$
- $m_{i, j}=2:\left(s_{i} s_{j}\right)\left(s_{i} s_{j}\right)=1 \quad \longrightarrow \quad s_{i} s_{j}=s_{j} s_{i}$ (they commute)
- $m_{i, j}=3:\left(s_{i} s_{j}\right)\left(s_{i} s_{j}\right)\left(s_{i} s_{j}\right)=1 \rightarrow s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ (braid relation)
- $m_{i, j}=\infty: s_{i}$ and $s_{j}$ are not related.

Why Coxeter groups?

- They're awesome.
- Discrete Geometry: Symmetries of regular polyhedra.
- Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)
- Geometry: Classification of Lie groups and Lie algebras


## Examples of Coxeter groups

A shorthand notation is the Coxeter graph:

- Vertices: One for every generator $i$
- Edges: Create an edge between $i$ and $j$ when $m_{i, j} \geq 3$ Label edges with $m_{i, j}$ when $\geq 4$.


## Dihedral group



- Generators: $s, t$.
- Relation: $(s t)^{m}=1$.

Symmetry group of regular m-gon.


## Examples of Coxeter groups

(Finite) $n$-permutations $S_{n}$
An $n$-permutation is a permutation of $\{1,2, \ldots, n\}$, (e.g. 214536 ).
Every $n$-permutation is a product of adjacent transpositions.

- $s_{i}:(i) \leftrightarrow(i+1) . \quad\left(e . g . s_{4}=123546\right)$.

Example. Write 214536 as $s_{3} s_{4} s_{1}$.

## This is a Coxeter group:

- Generators: $s_{1}, \ldots, s_{n-1}$
- $s_{i} s_{j}=s_{j} s_{i}$ when $|i-j| \geq 2$ (commutation relation)
- $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ when $|i-j|=1$ (braid relation)



## Examples of Coxeter groups

Affine $n$-Permutations $\widetilde{S_{n}}$

- Generators: $s_{0}, s_{1}, \ldots, s_{n-1}$
- Relations:

- $s_{0}$ has a braid relation with $s_{1}$ and $s_{n-1}$
- How does this impact 1-line notation?
- Perhaps interchanges 1 and $n$ ?
- Not quite! (Would add a relation)
- Better to view graph as:
- Every generator is the same.



## Examples of Coxeter groups

Affine $n$-Permutations $\widetilde{S_{n}}$
(G. Lusztig 1983, H. Eriksson, 1994)

Write an element $\widetilde{w} \in \widetilde{S_{n}}$ in 1-line notation as a permutation of $\mathbb{Z}$.
Generators transpose infinitely many pairs of entries:
$\left.s_{i}:(\mathbf{i}) \leftrightarrow \mathbf{( i + 1}\right) \ldots(n+i) \leftrightarrow(n+i+1) \ldots(-n+i) \leftrightarrow(-n+i+1) \ldots$

| $\ln S_{4}$, | $\cdots w(-4)$ | $w(-3) w(-2) w(-1) w(0)$ | $w(1) w(2) w(3) w(4)$ |  |  | $w^{(5)} w^{(6)} w^{(7)} w^{(8)}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $s_{1}$ | $\cdots-4$ | -2 $-3-1$ | 2 | 1 | 4 | 6 | 5 | 7 | 8 |  |
| $\mathrm{s}_{0}$ | -3 | -4 -2 -1 | 0 | 2 | 5 | 4 | 6 | 7 | 9 |  |
| $s_{1} s_{0}$ |  | -3 -1 2 | 0 | 1 | 6 | 4 | 5 |  | 10 |  |

Symmetry: Can think of as integers wrapped around a cylinder.
$\widetilde{w}$ is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(n)] . \quad s_{1} s_{0}=[0,1,3,6]$

## Examples of Coxeter groups

Affine $n$-Permutations $\widetilde{S_{n}}$


## Examples of Coxeter groups

Affine $n$-Permutations $\widetilde{S_{n}}$ - elements correspond to alcoves.


## Properties of Coxeter groups

For a elements $w$ in a Coxeter group $W$,

- $w$ may have multiple expressions.
- Transfer between them using relations.

Example. In $S_{4}, w=s_{1} s_{2} s_{3} s_{1}=s_{1} s_{2} s_{1} s_{3}=s_{2} s_{1} s_{2} s_{3}=s_{2} s_{1} s_{2} s_{3} s_{1} s_{1}$

- $w$ has a shortest expression (this length: Coxeter length)

For a Coxeter group $W$,

- An induced subgraph of $\widetilde{W}$ 's Coxeter graph is a subgroup $W$
- Every element $\widetilde{w} \in \widetilde{W}$ can be written $\widetilde{w}=w^{0} w$, where $w^{0} \in \widetilde{W} / W$ is a coset representative and $w \in W$.


## $S_{n}$ as a subgroup of $\widetilde{S_{n}}$

Key concept: View $S_{n}$ as a subgroup of $\widetilde{S_{n}}$.

- Write $\widetilde{w}=w^{0} w$, where $w^{0} \in \widetilde{S_{n}} / S_{n}$ and $w \in S_{n}$.
- $w^{0}$ determines the entries; $w$ determines their order.

Example. For $\widetilde{w}=[-11,20,-3,4,11,0] \in \widetilde{S}_{6}$,

$$
w^{0}=[-11,-3,0,4,11,20] \text { and } w=[1,3,6,4,5,2] .
$$

Many interpretations of these minimal length coset representatives.

## Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$



## An abacus model for $\widetilde{S}_{n} / S_{n}$

(James and Kerber, 1981) Given $w^{0}=\left[w_{1}, \ldots, w_{n}\right] \in \widetilde{S_{n}} / S_{n}$,

- Place integers in $n$ runners.
- Circled: beads. Empty: gaps
- Bijection: Given $w^{0}$, create an abacus where each runner has a lowest bead at $w_{i}$.
Example: [-4, -3, 7, 10]
These abaci are flush and balanced.



## Action of generators on the abacus

- $s_{i}$ acts by interchanging runners $i$ and $i+1$.
- $s_{0}$ acts by interchanging runners 1 and $n$, with level shifts.

Example: Consider $[-4,-3,7,10]=s_{1} s_{0} s_{2} s_{1} s_{3} s_{2} s_{0} s_{3} s_{1} s_{0}$.
Start with id= $[1,2,3,4]$ and apply the generators one by one:


## Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$



## Integer partitions and $n$-core partitions

For an integer partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ drawn as a Ferrers diagram,


The hook length of a box is \# boxes below and to the right.

| 10 | 9 | 6 | 5 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 6 | 3 | 2 |  |  |
| 6 | 5 | 2 | 1 |  |  |
| 3 | 2 |  |  |  |  |
| 2 | 1 |  |  |  |  |

An n-core is a partition with no boxes of hook length dividing $n$.
Example. $\lambda$ is a 4-core, 8-core, 11-core, 12-core, etc. $\lambda$ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.

## Core partitions for $\widetilde{S}_{n} / S_{n}$

Elements of $\widetilde{S_{n}} / S_{n}$ are in bijection with $n$-cores.
Bijection: $\{$ abaci $\} \longleftrightarrow\{n$-cores $\}$
Rule: Read the boundary steps of $\lambda$ from the abacus:

- A bead $\leftrightarrow$ vertical step
- A gap $\leftrightarrow$ horizontal step


Fact: Abacus flush with $n$-runners $\leftrightarrow$ partition is $n$-core.

## Action of generators on the core partition

- Label the boxes of $\lambda$ with residues.
- $s_{i}$ acts by adding or removing boxes with residue $i$.

Example: Let's see the deconstruction of $s_{1} s_{0} s_{2} s_{1} s_{3} s_{2} s_{0} s_{3} s_{1} s_{0}$ :

| 0 | 1 | 2 | 3 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0 | 1 | 2 | 3 | 0 |
| 2 | 3 | 0 | 1 | 2 | 3 |
| 1 | 2 | 3 | 0 | 1 | 2 |
| 0 | 1 | 2 | 3 | 0 | 1 |
| 3 | 0 | 1 | 2 | 3 | 0 |

Applying generator $s_{1}$ removes all removable 1-boxes.

## Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$



## Bounded partitions for $\widetilde{S}_{n} / S_{n}$

A partition $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)$ is $b$-bounded if $\beta_{i} \leq b$ for all $i$.
Elements of $\widetilde{S_{n}} / S_{n}$ are in bijection with $(n-1)$-bounded partitions.
Bijection: (Lapointe, Morse, 2005)

$$
\{n \text {-cores } \lambda\} \leftrightarrow\{(n-1) \text {-bounded partitions } \beta\}
$$

- Remove all boxes of $\lambda$ with hook length $\geq n$
- Left-justify remaining boxes.



## Canonical reduced expression for $\widetilde{S}_{n} / S_{n}$

Given the bounded partition, read off the reduced expression:
Method: (Berg, Jones, Vazirani, 2009)

- Fill $\beta$ with residues $i$
- Tally $s_{i}$ reading right-to-left in rows from bottom-to-top

Example. $[-4,-3,7,10]=s_{1} s_{0} s_{2} s_{1} s_{3} s_{2} s_{0} s_{3} s_{1} s_{0}$.


- The Coxeter length of $w$ is the number of boxes in $\beta$.


## Fully commutative elements

Definition. An element in a Coxeter group is fully commutative if it has only one reduced expression (up to commutation relations).

## NO BRAIDS ALLOWED!

Example. In $S_{4}, s_{1} s_{2} s_{3} s_{1}$ is not fully commutative because

$$
s_{1} s_{2} s_{3} s_{1} \stackrel{\text { OK }}{=} s_{1} s_{2} s_{1} s_{3} \stackrel{\text { BAD }}{=} s_{2} s_{1} s_{2} s_{3}
$$

Question: What is $s_{1} s_{2} s_{1}$ in 1-line notation?
Answer: $321456 \ldots$

## Enumerating fully commutative elements

Question: How many fully commutative elements are there in $S_{n}$ ?
Answer: Catalan many!
$S_{1}$ : 1. id
$S_{2}$ : 2. id, $s_{1}$
$S_{3}$ : 5. id, $s_{1}, s_{2}, \quad s_{1} s_{2}, s_{2} s_{1}$
$S_{4}$ : 14. id, $s_{1}, s_{2}, s_{3}, s_{1} s_{2}, s_{2} s_{1}, s_{2} s_{3}, s_{3} s_{2}, s_{1} s_{3}$,

$$
s_{1} s_{2} s_{3}, s_{1} s_{3} s_{2}, s_{2} s_{1} s_{3}, s_{3} s_{2} s_{1}, s_{2} s_{1} s_{3} s_{2}
$$

Key idea: (Billey, Jockusch, Stanley, 1993)
$w$ is fully commutative
$\Longleftrightarrow \quad w$ is 321-avoiding.
(Knuth, 1973) These are counted by the Catalan numbers.

## Enumerating fully commutative elements

Question: How many fully commutative elements are there in $\widetilde{S_{n}}$ ?
Answer: Infinitely many! (Even in $\widetilde{S}_{3}$.)

$$
\text { id, } s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{0}, s_{1} s_{2} s_{0} s_{1}, s_{1} s_{2} s_{0} s_{1} s_{2}, \ldots
$$

Multiplying the generators cyclically does not introduce braids.

This is not the right question.

## Enumerating fully commutative elements

Question: How many fully commutative elements are there in $\widetilde{S_{n}}$, with Coxeter length $\ell$ ?

$$
\ln \widetilde{S}_{3}: \quad \begin{array}{lllll}
s_{0} & s_{0} s_{1} & s_{0} s_{2} \\
s_{1}, & s_{1} s_{0} & s_{1} s_{2} \\
s_{2} & s_{2} s_{0} & s_{2} s_{1}
\end{array}, \begin{array}{lll}
s_{0} s_{1} s_{2} & s_{0} s_{2} s_{1} \\
s_{1} s_{0} s_{2} & s_{1} s_{2} s_{0} \\
s_{2} s_{0} s_{1} & s_{2} s_{1} s_{0}
\end{array}, \ldots
$$

Question: Determine the coefficient of $q^{\ell}$ in the generating function

$$
\begin{gathered}
f_{n}(q)=\sum_{\tilde{w} \in \widetilde{S}_{n}^{\text {C/ }}} q^{\ell(w)} . \\
f_{3}(q)=1 q^{0}+3 q^{1}+6 q^{2}+6 q^{3}+\ldots
\end{gathered}
$$

Answer: Consult your friendly computer algebra program.

## DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: "Hey Chris, look at this data!"

$$
\begin{aligned}
f_{3}(q)= & 1+3 q+6 q^{2}+6 q^{3}+6 q^{4}+6 q^{5}+\cdots \\
f_{4}(q)= & 1+4 q+10 q^{2}+16 q^{3}+18 q^{4}+16 q^{5}+18 q^{6}+\cdots \\
f_{5}(q)= & 1+5 q+15 q^{2}+30 q^{3}+45 q^{4}+50 q^{5}+50 q^{6}+50 q^{7}+50 q^{8}+\cdots \\
f_{6}(q)= & 1+6 q+21 q^{2}+50 q^{3}+90 q^{4}+126 q^{5}+146 q^{6}+ \\
& 150 q^{7}+156 q^{8}+152 q^{9}+156 q^{10}+150 q^{11}+158 q^{12}+ \\
& 150 q^{13}+156 q^{14}+152 q^{15}+156 q^{16}+150 q^{17}+158 q^{18}+\cdots \\
f_{7}(q)= & 1+7 q+28 q^{2}+77 q^{3}+161 q^{4}+266 q^{5}+364 q^{6}+427 q^{7}+ \\
& 462 q^{8}+483 q^{9}+490 q^{10}+490 q^{11}+490 q^{12}+490 q^{13}+\cdots
\end{aligned}
$$

Notice:

- The coefficients eventually repeat.

Goals: $\star$ Find a formula for the generating function $f_{n}(q)$. $\star$ Understand this periodicity.

## Pattern Avoidance Characterization

Key idea: (Green, 2002)
$\widetilde{w}$ is fully commutative

$\widetilde{w}$ is 321 -avoiding.

Example. [ $-4,-1,1,14]$ is NOT fully commutative because:

|  |  | ${ }^{*}$ | $w(1) w(2) w(3) w(4)$ | (8) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| w | 6 | 8 -5 -3 10 | -4-1 1 | 3 |  |

## Game plan

Goal: Enumerate 321-avoiding affine permutations $\widetilde{w}$.

- Write $\widetilde{w}=w^{0} w$, where $w^{0} \in \widetilde{S_{n}} / S_{n}$ and $w \in S_{n}$.
- $w^{0}$ determines the entries; $w$ determines their order.

Example. For $\widetilde{w}=[-11,20,-3,4,11,0] \in \widetilde{S}_{6}$,

$$
w^{0}=[-11,-3,0,4,11,20] \text { and } w=[1,3,6,4,5,2] .
$$

- Determine which $w^{0}$ are 321-avoiding.
- Determine the finite $w$ such that $w^{0} w$ is still 321-avoiding


## Normalized abacus and 321-avoiding criterion for $\widetilde{S}_{n} / S_{n}$

We use a normalized abacus diagram; shifts all beads so that the first gap is in position $n+1$; this map is invertible.


Theorem. (H-J '09) Given a normalized abacus for $w^{0} \in \widetilde{S_{n}} / S_{n}$, where the last bead occurs in position $i$,
$w^{0}$ is
fully commutative
lowest beads in runners only occur in

$$
\{1, \ldots, n\} \cup\{i-n+1, \ldots, i\}
$$

Idea: Lowest beads in runners $\leftrightarrow$ entries in base window.

| $w(-n+1)$ | +2) |  | $w(-1)$ | $w(0)$ | $w(1) w(2)$ |  |  | $w(\mathrm{n}-1) w(\mathrm{n})$ |  | $w(\mathrm{n}+1) w(\mathrm{n}+2)$ |  | $\cdots w(2 n-1) w(2 n)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 10 |  | hi | hi | 10 |  |  | hi | hi | 10 | 10 |  | hi | hi |
| 10 | 10 | med |  | hi |  |  | med |  |  | 10 |  | med | hi | hi |

## Long versus short elements

Partition $\widetilde{S_{n}}$ into long and short elements:

## Short elements

Lowest bead in position $i \leq 2 n$
Finitely many
Hard to count

| 1 | 2 | 3 | 4 |  | $(1)$ | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 | 5 | 6 | 7 | 8 |  |
| 9 | 10 | 11 | 12 | 9 | 10 | 11 | 12 |  |
| 13 | 14 | 15 | 16 | 13 | 14 | 15 | 16 |  |
| 17 | 18 | 19 | 20 | 17 | 18 | 19 | 20 |  |



Long elements
Lowest bead in position $i>2 n$
Come in infinite families
Easy to count
Explain the periodicity

## Enumerating long elements

For long elements $\widetilde{w} \in \widetilde{S_{n}}$, the base window for $w^{0}$ is $[a, a, \ldots, a, b, b, \ldots, b]$ where $1 \leq a \leq n$, and $n+2 \leq b$.

Question: Which permutations $w \in S_{n}$ can be multiplied into a $w^{0}$ ?

- We can not invert any pairs of a's, nor any pairs of $b$ 's. (Would create a 321-pattern with an adjacent window)
- Only possible to intersperse the a's and the $b$ 's. How many ways to intersperse $(k) a$ 's and $(n-k) b$ 's?

BUT: We must also keep track of the length of these permutations. This is counted by the $q$-binomial coefficient:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}} \text {, where } q_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)
$$

## Enumerating long elements

After we:

- Enumerate by length all possible $w^{0}$ with $(k)$ a's and $(n-k) b$ 's.
- Combine the Coxeter lengths by $\ell(\widetilde{w})=\ell\left(w^{0}\right)+\ell(w)$.

Then we get:
Theorem. (H-J '09) For a fixed $n \geq 0$, the generating function by length for long fully commutative elements $\widetilde{w} \in \widetilde{S}_{n}^{F C}$ is

$$
\sum q^{\ell(\widetilde{w})}=\frac{q^{n}}{1-q^{n}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}
$$

## Periodicity of fully commutative elements in $\widetilde{S_{n}}$

Corollary. (H-J '09) The coefficients of $f_{n}(q)$ are eventually periodic with period dividing $n$.
When $n$ is prime, the period is $1: \quad a_{i}=\frac{1}{n}\left(\binom{2 n}{n}-2\right)$.
Proof. For $i$ sufficiently large, all elements of length $i$ are long.
Our generating function is simply some polynomial over $\left(1-q^{n}\right)$ :

$$
\frac{q^{n}}{1-q^{n}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}=\frac{P(q)}{1-q^{n}}=P(q)\left(1+q^{n}+q^{2 n}+\cdots\right)
$$

When $n$ is prime, an extra factor of $\left(1+q+\cdots+q^{n-1}\right)$ cancels;

$$
\frac{1}{1-q}\left[\frac{q^{n}}{1+q+\cdots+q^{n-1}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}\right]
$$

As suggested by a referee, we know that $a_{i}=P(1)=\frac{1}{n} \sum_{k=1}^{n-1}\binom{n}{k}^{2}$.

## Short elements are hard

For short elements $\widetilde{w} \in \widetilde{S_{n}}$, the base window for $w^{0}$ is $[a, \ldots, a, b, \ldots, b, c, \ldots, c]$, and there is more interaction:
(1) (2) 4

5 (6) 78
$\begin{array}{llll}9 & 10 & 11 & 12\end{array}$

No $a$ can invert with an $a$ or $b$. No $c$ can invert with $a b$ or $c$.

- Count $\widetilde{w}$ where some a intertwines with some $c$.
- Count $\widetilde{w} \mathrm{w} / \mathrm{o}$ intertwining and 0 descents in the $b$ 's.
- Count $\widetilde{w} w / o$ intertwining and 1 descent in the b's.
- Not so hard to determine the acceptable finite permutations w .
- Such as $\sum_{M \geq 0} x^{L+M+R} \sum_{\mu=1}^{M-1}\left(\left[\begin{array}{c}M \\ \mu\end{array}\right]_{q}-1\right)\left[\begin{array}{c}L+\mu \\ \mu\end{array}\right]_{q}\left[\begin{array}{c}R+M-\mu \\ M-\mu\end{array}\right]_{q}$
- Count $\widetilde{w} \mathrm{w} / \mathrm{o}$ intertwining and 2 descents in the b's.
- Count $\widetilde{w}$ which are finite permutations. (Barcucci et al.)
- Solve functional recurrences (Bousquet-Mélou)
- Such as $D(x, q, z, s)=$

$$
N(x, q, z, s)+\frac{x q s}{1-q s}(D(x, q, z, 1)-D(x, q, z, q s))+x s D(x, q, z, s)
$$

## Future Work

- Extend to $\widetilde{B_{n}}, \widetilde{C_{n}}$, and $\widetilde{D_{n}}$
- Develop combinatorial interpretations
- 321-avoiding characterization?
- Heap interpretation of fully commutative elements
- Can use Viennot's heaps of pieces theory
- Better bound on periodicity
- More combinatorial interpretations for $\widetilde{W} / W$
- What do you know?


## Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$



## Combinatorial interpretations of $\widetilde{C} / C, \widetilde{B} / B, \widetilde{B} / D, \widetilde{D} / D$



## Future Work

- Extend to $\widetilde{B_{n}}, \widetilde{C_{n}}$, and $\widetilde{D_{n}}$
- Develop combinatorial interpretations
- 321-avoiding characterization?
- Heap interpretation of fully commutative elements
- Can use Viennot's heaps of pieces theory
- Better bound on periodicity
- More combinatorial interpretations for $\widetilde{W} / W$
- What do you know?


## Thank you!

Slides available: people.qc.cuny.edu/chanusa $>$ Talks

* Anders Björner and Francesco Brenti.

Combinatorics of Coxeter Groups, Springer, 2005.
R- Christopher R. H. Hanusa and Brant C. Jones.
The enumeration of fully commutative affine permutations
European Journal of Combinatorics. Vol 31, 1342-1359. (2010)
(in Christopher R. H. Hanusa and Brant C. Jones.
Abacus models for parabolic quotients of affine Coxeter groups

