Combinatorial interpretations in affine Coxeter groups

Christopher R. H. Hanusa
Queens College, CUNY

Joint work with Brant C. Jones, James Madison University
What is a Coxeter group?

A **Coxeter group** is a group with

- **Generators:** $S = \{s_1, s_2, \ldots, s_n\}$
- **Relations:**
 - $s_i^2 = 1$, $(s_is_j)^m_{i,j} = 1$ where $m_{i,j} \geq 2$ or $= \infty$
 - $m_{i,j} = 2$: $(s_is_j)(s_is_j) = 1 \rightarrow s_is_j = s_js_i$ (they commute)
 - $m_{i,j} = 3$: $(s_is_j)(s_is_j)(s_is_j) = 1 \rightarrow s_is_js_i = s_js_is_j$ (braid relation)
 - $m_{i,j} = \infty$: s_i and s_j are not related.

Why Coxeter groups?

- They’re awesome.
- Discrete Geometry: Symmetries of regular polyhedra.
- Algebra: Symmetric group generalizations. (Kac-Moody, Hecke)
- Geometry: Classification of Lie groups and Lie algebras
Examples of Coxeter groups

A shorthand notation is the **Coxeter graph**:

- **Vertices**: One for every generator i
- **Edges**: Create an edge between i and j when $m_{i,j} \geq 3$
 Label edges with $m_{i,j}$ when ≥ 4.

Dihedral group

- **Generators**: s, t.
- **Relation**: $(st)^m = 1$.

Symmetry group of regular m-gon.
Examples of Coxeter groups

(Finite) \(n \)-permutations \(S_n \)

An \(n \)-permutation is a permutation of \(\{1, 2, \ldots, n\} \), (e.g. \(214536 \)).

Every \(n \)-permutation is a product of adjacent transpositions.

\(s_i : (i) \leftrightarrow (i + 1) \). (e.g. \(s_4 = 123546 \)).

Example. Write \(214536 \) as \(s_3s_4s_1 \).

This is a Coxeter group:

- Generators: \(s_1, \ldots, s_{n-1} \)
- \(s_is_j = s_js_i \) when \(|i - j| \geq 2 \) (commutation relation)
- \(s_is_js_i = s_js_is_j \) when \(|i - j| = 1 \) (braid relation)
Examples of Coxeter groups

Affine n-Permutations \tilde{S}_n

- Generators: $s_0, s_1, \ldots, s_{n-1}$
- Relations:

 - s_0 has a braid relation with s_1 and s_{n-1}
 - How does this impact 1-line notation?
 - Perhaps interchanges 1 and n?
 - Not quite! (Would add a relation)
 - Better to view graph as:
 - Every generator is the same.
Examples of Coxeter groups

Affine \(n \)-Permutations \(\widetilde{S}_n \)

Write an element \(\tilde{w} \in \widetilde{S}_n \) in 1-line notation as a permutation of \(\mathbb{Z} \).

Generators transpose **infinitely many** pairs of entries:
\[s_i : (i) \leftrightarrow (i+1) \ldots (n+i) \leftrightarrow (n+i+1) \ldots (−n+i) \leftrightarrow (−n+i+1) \ldots \]

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(\ldots)</th>
<th>(-4)</th>
<th>(-3)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(2)</th>
<th>(1)</th>
<th>(3)</th>
<th>(4)</th>
<th>(6)</th>
<th>(5)</th>
<th>(7)</th>
<th>(8)</th>
<th>(10 \ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_0)</td>
<td>(\ldots)</td>
<td>(-3)</td>
<td>(-4)</td>
<td>(-2)</td>
<td>(-1)</td>
<td>(1)</td>
<td>(0)</td>
<td>(2)</td>
<td>(3)</td>
<td>(5)</td>
<td>(4)</td>
<td>(6)</td>
<td>(7)</td>
<td>(9)</td>
</tr>
<tr>
<td>(s_1 s_0)</td>
<td>(\ldots)</td>
<td>(-2)</td>
<td>(-4)</td>
<td>(-3)</td>
<td>(-1)</td>
<td>(2)</td>
<td>(0)</td>
<td>(1)</td>
<td>(3)</td>
<td>(6)</td>
<td>(4)</td>
<td>(5)</td>
<td>(7)</td>
<td>(10)</td>
</tr>
</tbody>
</table>

Symmetry: Can think of as integers wrapped around a cylinder.

\(\tilde{w} \) is defined by the **window** \([\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(n)] \).

\(s_1 s_0 = [0, 1, 3, 6] \)
Examples of Coxeter groups

Affine n-Permutations \tilde{S}_n
Examples of Coxeter groups

Affine \(n \)-Permutations \(\tilde{S}_n \) — elements correspond to alcoves.
Properties of Coxeter groups

For a elements w in a Coxeter group W,

- w may have multiple expressions.
 - Transfer between them using relations.

Example. In S_4, $w = s_1 s_2 s_3 s_1 = s_1 s_2 s_1 s_3 = s_2 s_1 s_2 s_3 = s_2 s_1 s_2 s_3 s_1 s_1$

- w has a shortest expression (this length: **Coxeter length**)

For a Coxeter group \widetilde{W},

- An induced subgraph of \widetilde{W}’s Coxeter graph is a subgroup W
- Every element $\tilde{w} \in \widetilde{W}$ can be written $\tilde{w} = w^0 w$, where $w^0 \in \widetilde{W}/W$ is a coset representative and $w \in W$.
Key concept: View S_n as a subgroup of \tilde{S}_n.

- Write $\tilde{w} = w^0 w$, where $w^0 \in \tilde{S}_n/S_n$ and $w \in S_n$.
- w^0 determines the entries; w determines their order.

Example. For $\tilde{w} = [-11, 20, -3, 4, 11, 0] \in \tilde{S}_6$,

$$w^0 = [-11, -3, 0, 4, 11, 20] \quad \text{and} \quad w = [1, 3, 6, 4, 5, 2].$$

Many interpretations of these *minimal length coset representatives.*
Combinatorial interpretations of \tilde{S}_n/S_n

Combinatorial interpretations of \tilde{S}_n/S_n

Redacted: $[−4,−3,7,10]$,

Reduced expression: $s_1s_0s_2s_3s_1s_0s_2s_3s_1s_0$

Window notation

Abacus diagram

Elements of \tilde{S}_n/S_n

Bounded partition

Core partition

Root lattice point

Bounded partition

Combinatorial interpretations in affine Coxeter groups

Christopher R. H. Hanusa Queens College, CUNY

Binghamton University Combinatorics Seminar

May 12, 2011 10 / 37
An abacus model for \tilde{S}_n/S_n

(James and Kerber, 1981) Given $w^0 = [w_1, \ldots, w_n] \in \tilde{S}_n/S_n$,

- Place integers in n runners.
- Circled: beads. Empty: gaps
- Bijection: Given w^0, create an abacus where each runner has a lowest bead at w_i.

Example: $[-4, -3, 7, 10]$

These abaci are flush and balanced.

The generators act nicely on the abacus.
Action of generators on the abacus

- s_i acts by interchanging runners i and $i + 1$.
- s_0 acts by interchanging runners 1 and n, with level shifts.

Example: Consider $[-4, -3, 7, 10] = s_1 s_0 s_1 s_3 s_2 s_0 s_3 s_1 s_0$.

Start with $id = [1, 2, 3, 4]$ and apply the generators one by one:

```
[1, 2, 3, 4]  S0  [0, 2, 3, 5]  S1  [0, 1, 3, 6]  S3  [-1, 1, 4, 6]  S0  [-1, 0, 5, 6]
```

```
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  9  10  11  12 13 14 15 16
```

```
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  9  10  11  12 13 14 15 16
```

```
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  9  10  11  12 13 14 15 16
```

```
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  9  10  11  12 13 14 15 16
```

```
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  9  10  11  12 13 14 15 16
```

```
1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16
-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0  9  10  11  12 13 14 15 16
```
Combinatorial interpretations of \tilde{S}_n/S_n

Elements of \tilde{S}_n/S_n

- Window notation
- Reduced expression
- Abacus diagram
- Bounded partition
- Core partition
- Root lattice point

$[-4,-3,7,10]$
Integer partitions and n-core partitions

For an integer partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ drawn as a Ferrers diagram,

The **hook length** of a box is $\#$ boxes below and to the right.

An **n-core** is a partition with no boxes of hook length dividing n.

Example. λ is a 4-core, 8-core, 11-core, 12-core, etc.
λ is NOT a 1-, 2-, 3-, 5-, 6-, 7-, 9-, or 10-core.
Core partitions for \tilde{S}_n/S_n

Elements of \tilde{S}_n/S_n are in bijection with n-cores.

Bijection: $\{\text{abaci}\} \leftrightarrow \{n\text{-cores}\}$

Rule: Read the boundary steps of λ from the abacus:

- A bead \leftrightarrow vertical step
- A gap \leftrightarrow horizontal step

Fact: Abacus flush with n-runners \leftrightarrow partition is n-core.
Action of generators on the core partition

- Label the boxes of λ with residues.
- s_i acts by adding or removing boxes with residue i.

Example: Let’s see the *deconstruction* of $s_1 s_0 s_2 s_1 s_3 s_2 s_0 s_3 s_1 s_0$:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Applying generator s_1 removes all removable 1-boxes.
Combinatorial interpretations of \widetilde{S}_n/S_n

Elements of \widetilde{S}_n/S_n

- Reduced expression
- Window notation
- Abacus diagram
- Bounded partition
- Core partition
- Root lattice point

$[-4, -3, 7, 10]$

$s_1 s_0 s_2 s_3 s_1 s_0 s_2 s_3 s_1 s_0$

$(-1, 2, 1, -2)$
Bounded partitions for \widetilde{S}_n/S_n

A partition $\beta = (\beta_1, \ldots, \beta_k)$ is \textit{b-bounded} if $\beta_i \leq b$ for all i.

Elements of \widetilde{S}_n/S_n are in bijection with $(n-1)$-bounded partitions.

\textbf{Bijection:} (Lapointe, Morse, 2005)

$$\{n\text{-cores } \lambda\} \leftrightarrow \{(n - 1)\text{-bounded partitions } \beta\}$$

- Remove all boxes of λ with hook length $\geq n$
- Left-justify remaining boxes.

\[\begin{array}{cccccc}
10 & 9 & 6 & 5 & 2 & 1 \\
7 & 6 & 3 & 2 \\
6 & 5 & 2 & 1 \\
3 & 2 \\
2 & 1 \\
\end{array}\]

$\lambda = (6, 4, 4, 2, 2)$

\rightarrow

\rightarrow

$\beta = (2, 2, 2, 2, 2)$
Canonical reduced expression for \tilde{S}_n/S_n

Given the bounded partition, read off the reduced expression:

Method: (Berg, Jones, Vazirani, 2009)

- Fill β with residues i
- Tally s_i reading right-to-left in rows from bottom-to-top

Example. $[-4, -3, 7, 10] = s_1 s_0 s_2 s_1 s_3 s_2 s_0 s_3 s_1 s_0$.

- The Coxeter length of w is the number of boxes in β.
Fully commutative elements

Definition. An element in a Coxeter group is **fully commutative** if it has only one reduced expression (up to commutation relations).

Example. In S_4, $s_1s_2s_3s_1$ is **not fully commutative** because

$$s_1s_2s_3s_1 = s_1s_2s_1s_3 \neq s_2s_1s_2s_3$$

Question: What is $s_1s_2s_1$ in **1-line** notation?

Answer: $3 \ 2 \ 1 \ 4 \ 5 \ 6 \ldots$
Enumerating fully commutative elements

Question: How many fully commutative elements are there in S_n?

Answer: Catalan many!

S_1: 1. id

S_2: 2. id, s_1

S_3: 5. id, s_1, s_2, s_1s_2, s_2s_1

S_4: 14. id, s_1, s_2, s_3, s_1s_2, s_2s_1, s_2s_3, s_3s_2, s_1s_3, $s_1s_2s_3$, $s_1s_3s_2$, $s_2s_1s_3$, $s_3s_2s_1$, $s_2s_1s_3s_2$

Key idea: (Billey, Jockusch, Stanley, 1993)

w is fully commutative $\iff w$ is 321-avoiding.

(Knuth, 1973) These are counted by the Catalan numbers.
Question: How many fully commutative elements are there in \tilde{S}_n?

Answer: Infinitely many! (Even in \tilde{S}_3.)

$id, s_1, s_1 s_2, s_1 s_2 s_0, s_1 s_2 s_0 s_1, s_1 s_2 s_0 s_1 s_2, \ldots$

Multiplying the generators cyclically does not introduce braids.

This is not the right question.
Enumerating fully commutative elements

Question: How many fully commutative elements are there in \tilde{S}_n, with Coxeter length ℓ?

In \tilde{S}_3: id, s_1, $s_0 s_1$, $s_0 s_2$, $s_0 s_1 s_2$, $s_0 s_1 s_2 s_1$, ...

Question: Determine the coefficient of q^ℓ in the generating function

$$f_n(q) = \sum_{\tilde{w} \in \tilde{S}_n^{FC}} q^{\ell(w)}.$$

$$f_3(q) = 1q^0 + 3q^1 + 6q^2 + 6q^3 + \ldots$$

Answer: Consult your friendly computer algebra program.
Brant calls up and says: “Hey Chris, look at this data!”

\[f_3(q) = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + 6q^5 + \cdots \]
\[f_4(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots \]
\[f_5(q) = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + 50q^7 + 50q^8 + \cdots \]
\[f_6(q) = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 + 150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} + 150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} + \cdots \]
\[f_7(q) = 1 + 7q + 28q^2 + 77q^3 + 161q^4 + 266q^5 + 364q^6 + 427q^7 + 462q^8 + 483q^9 + 490q^{10} + 490q^{11} + 490q^{12} + 490q^{13} + \cdots \]

Notice:
- The coefficients eventually repeat.

Goals:
- Find a formula for the generating function \(f_n(q) \).
- Understand this periodicity.
Pattern Avoidance Characterization

Key idea: (Green, 2002)

\[\tilde{w} \text{ is fully commutative} \iff \tilde{w} \text{ is 321-avoiding}. \]

Example. \([-4, -1, 1, 14]\) is **NOT** fully commutative because:

\[
\begin{array}{cccccccccc}
\vdots & w(-4) & w(-3) & w(-2) & w(-1) & w(0) & w(1) & w(2) & w(3) & w(4) & \vdots \\
\tilde{w} & \vdots & 6 & -8 & -5 & -3 & 10 & -4 & -1 & 14 & \vdots \\
\end{array}
\]

\[
\begin{array}{cccccccccc}
\vdots & \vdots \\
\tilde{w} & \vdots \\
\end{array}
\]
Game plan

Goal: Enumerate 321-avoiding affine permutations \tilde{w}.

- Write $\tilde{w} = w^0 w$, where $w^0 \in \tilde{S}_n / S_n$ and $w \in S_n$.
 - w^0 determines the entries; w determines their order.

Example. For $\tilde{w} = [-11, 20, -3, 4, 11, 0] \in \tilde{S}_6$,

$$w^0 = [-11, -3, 0, 4, 11, 20] \text{ and } w = [1, 3, 6, 4, 5, 2].$$

- Determine which w^0 are 321-avoiding.
- Determine the finite w such that $w^0 w$ is still 321-avoiding.
Normalized abacus and 321-avoiding criterion for \tilde{S}_n/S_n

We use a *normalized* abacus diagram; shifts all beads so that the first gap is in position $n+1$; this map is invertible.

Theorem. (H–J ‘09) Given a normalized abacus for $w^0 \in \tilde{S}_n/S_n$, where the last bead occurs in position i,

$$w^0 \text{ is fully commutative} \iff \text{lowest beads in runners only occur in } \{1, \ldots, n\} \cup \{i-n+1, \ldots, i\}$$

Idea: Lowest beads in runners \leftrightarrow entries in base window.

<table>
<thead>
<tr>
<th>$w(-n+1)$ $w(-n+2)$ \ldots $w(-1)$ $w(0)$</th>
<th>$w(1)$ $w(2)$ \ldots $w(n-1)$ $w(n)$</th>
<th>$w(n+1)$ $w(n+2)$ \ldots $w(2n-1)$ $w(2n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo lo \ldots hi hi</td>
<td>lo lo \ldots hi hi</td>
<td>lo lo \ldots hi hi</td>
</tr>
<tr>
<td>lo lo med hi \mathbf{hi}</td>
<td>lo lo \mathbf{med} hi hi</td>
<td>lo lo med hi hi</td>
</tr>
</tbody>
</table>
Long versus short elements

Partition \widetilde{S}_n into long and short elements:

Short elements
- Lowest bead in position $i \leq 2n$
- Finitely many
- **Hard to count**

Long elements
- Lowest bead in position $i > 2n$
- Come in infinite families
- **Easy to count**
- *Explain the periodicity*
Enumerating long elements

For long elements $\tilde{w} \in \tilde{S}_n$, the base window for w^0 is $[a, a, \ldots, a, b, b, \ldots, b]$ where $1 \leq a \leq n$, and $n + 2 \leq b$.

Question: Which permutations $w \in S_n$ can be multiplied into a w^0?

- We can not invert any pairs of a’s, nor any pairs of b’s. (Would create a 321-pattern with an adjacent window)
- Only possible to *intersperse* the a’s and the b’s.

How many ways to intersperse (k) a’s and $(n - k)$ b’s? \[(\begin{array}{c} n \\ k \end{array}) \]

BUT: We must also keep track of the *length* of these permutations. This is counted by the q-binomial coefficient:

\[\left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{(q)_n}{(q)_k(q)_{n-k}}, \text{ where } q_n = (1 - q)(1 - q^2) \cdots (1 - q^n) \]
Enumerating long elements

After we:

- Enumerate by length all possible w^0 with (k) a’s and $(n - k)$ b’s.
- Combine the Coxeter lengths by $\ell(\tilde{w}) = \ell(w^0) + \ell(w)$.

Then we get:

Theorem. (H–J ’09) For a fixed $n \geq 0$, the generating function by length for long fully commutative elements $\tilde{w} \in \tilde{S}^\text{FC}_n$ is

$$\sum q^{\ell(\tilde{w})} = \frac{q^n}{1 - q^n} \sum_{k=1}^{n-1} \binom{n}{k}^2 q^k.$$
Periodicity of fully commutative elements in \tilde{S}_n

Corollary. (H–J ’09) The coefficients of $f_n(q)$ are eventually periodic with period dividing n.

When n is prime, the period is 1:

$$a_i = \frac{1}{n} \left(\binom{2n}{n} - 2 \right).$$

Proof. For i sufficiently large, all elements of length i are long. Our generating function is simply some polynomial over $(1 - q^n)$:

$$\frac{q^n}{1 - q^n} \sum_{k=1}^{n-1} \left[\begin{array}{c} n \\ k \end{array} \right]_q^2 = \frac{P(q)}{1 - q^n} = P(q)(1 + q^n + q^{2n} + \cdots)$$

When n is prime, an extra factor of $(1 + q + \cdots + q^{n-1})$ cancels:

$$\frac{1}{1 - q} \left[\frac{q^n}{1 + q + \cdots + q^{n-1}} \sum_{k=1}^{n-1} \left[\begin{array}{c} n \\ k \end{array} \right]_q^2 \right]$$

As suggested by a referee, we know that $a_i = P(1) = \frac{1}{n} \sum_{k=1}^{n-1} \binom{n}{k}^2$.
Short elements are hard

For short elements \(\tilde{w} \in \tilde{S}_n \), the base window for \(w^0 \) is \([a, \ldots, a, b, \ldots, b, c, \ldots, c] \), and there is more interaction:

No \(a \) can invert with an \(a \) or \(b \). No \(c \) can invert with a \(b \) or \(c \).

- Count \(\tilde{w} \) where some \(a \) intertwines with some \(c \).
- Count \(\tilde{w} \) w/o intertwining and 0 descents in the \(b \)'s.
- Count \(\tilde{w} \) w/o intertwining and 1 descent in the \(b \)'s.
 - Not so hard to determine the acceptable finite permutations \(w \).
 - Such as \(\sum_{M \geq 0} x^{L+M+R} \sum_{\mu=1}^{M-1} \left(\begin{bmatrix} M \\ \mu \end{bmatrix} q - 1 \right) \begin{bmatrix} L+\mu \\ \mu \end{bmatrix} q^{[R+M-\mu]} \right)_q \)
- Count \(\tilde{w} \) w/o intertwining and 2 descents in the \(b \)'s.
- Count \(\tilde{w} \) which are finite permutations. (Barcucci et al.)
 - Solve functional recurrences (Bousquet-Mélou)
 - Such as
 \[
 D(x, q, z, s) = N(x, q, z, s) + \frac{xqs}{1 - qs} \left(D(x, q, z, 1) - D(x, q, z, qs) \right) + xsD(x, q, z, s)
 \]
Future Work

- Extend to \tilde{B}_n, \tilde{C}_n, and \tilde{D}_n
 - Develop combinatorial interpretations ✓
 - 321-avoiding characterization?
- Heap interpretation of fully commutative elements
 - Can use Viennot's heaps of pieces theory
 - Better bound on periodicity
- More combinatorial interpretations for \tilde{W}/W
 - What do you know?
Combinatorial interpretations of \tilde{S}_n/S_n

[-4, -3, 7, 10]

window notation

reduced expression

abacus diagram

bounded partition

core partition

root lattice point

$(-1, 2, 1, -2)$
Combinatorial interpretations of \tilde{C}/C, \tilde{B}/B, \tilde{B}/D, \tilde{D}/D
Future Work

- Extend to \widetilde{B}_n, \widetilde{C}_n, and \widetilde{D}_n
 - Develop combinatorial interpretations ✓
 - 321-avoiding characterization?
- Heap interpretation of fully commutative elements
 - Can use Viennot's heaps of pieces theory
 - Better bound on periodicity
- More combinatorial interpretations for \widetilde{W}/W
 - What do you know?
Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

Christopher R. H. Hanusa and Brant C. Jones. Abacus models for parabolic quotients of affine Coxeter groups