The enumeration of fully commutative affine permutations

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant C. Jones, James Madison University

The affine permutations

(Finite) n-Permutations
S_{n} has generators $\left\{s_{1}, \ldots, s_{n-1}\right\}$ and braid relations

Write elements in 1 -line notation as a permutation of $\{1,2, \ldots, n\}$. Generators transpose a pair of entries: $s_{i}:(i) \leftrightarrow(i+1)$. Example. $s_{1} s_{3} \in S_{4}$ is 2143

Affine n-Permutations
$\widetilde{S_{n}}$ has generators $\left\{s_{0}, s_{1}, \ldots, s_{n-1}\right\}$ and braid relations

The affine permutations

Affine n-Permutations
Write elements in 1-line notation, as a permutation of \mathbb{Z}.
Generators transpose infinitely many pairs of entries:
$s_{i}:(\mathbf{i}) \leftrightarrow(\mathbf{i}+\mathbf{1}) \ldots(n+i) \leftrightarrow(n+i+1) \ldots(-n+i) \leftrightarrow(-n+i+1) \ldots$

\star Translational symmetry: $\widetilde{w}(i+n)=\widetilde{w}(i)+n$.
Therefore, \widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \ldots, \widetilde{w}(n)]$. Example. In $\widetilde{S}_{4}, s_{1} s_{0}=[0,1,3,6]$

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative if it has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In $S_{4}, s_{1} s_{2} s_{3} s_{1}$ is not fully commutative because

$$
s_{1} s_{2} s_{3} s_{1} \stackrel{\mathrm{OK}}{=} s_{1} s_{2} s_{1} s_{3} \stackrel{\mathrm{BAD}}{=} s_{2} s_{1} s_{2} s_{3}
$$

Question: How many fully commutative elements are there in S_{n} ?
Answer: Catalan many! (Billey, Jockusch, Stanley, 1993; Knuth, 1973)
S_{1} : 1. id
S_{2} : 2. id, s_{1}
S_{3} : 5. id, $s_{1}, s_{2}, \quad s_{1} s_{2}, s_{2} s_{1}$
S_{4} : 14. id, $s_{1}, s_{2}, s_{3}, s_{1} s_{2}, s_{2} s_{1}, s_{2} s_{3}, s_{3} s_{2}, s_{1} s_{3}$,

$$
s_{1} s_{2} s_{3}, s_{1} s_{3} s_{2}, s_{2} s_{1} s_{3}, s_{3} s_{2} s_{1}, s_{2} s_{1} s_{3} s_{2}
$$

Enumerating fully commutative elements

Question: How many fully commutative elements are there in $\widetilde{S_{n}}$?
Answer: Infinitely many! (Even in \widetilde{S}_{3}.)

$$
\text { id, } s_{1}, s_{1} s_{2}, s_{1} s_{2} s_{0}, s_{1} s_{2} s_{0} s_{1}, s_{1} s_{2} s_{0} s_{1} s_{2}, \ldots
$$

Multiplying the generators cyclically does not introduce braids.

This is not the right question.

Enumerating fully commutative elements

Question: How many fully commutative elements are there in $\widetilde{S_{n}}$, with Coxeter length ℓ ?

$$
\begin{aligned}
& \tilde{s}^{s_{0}} \quad s_{0} s_{1} \quad s_{0} s_{2} \quad s_{0} s_{1} s_{2} \quad s_{0} s_{2} s_{1} \\
& \ln \widetilde{S}_{3}: \quad \text { id }, s_{1}, s_{1} s_{0} s_{1} s_{2}, s_{1} s_{0} s_{2} s_{1} s_{2} s_{0}, \ldots \\
& \begin{array}{lllll}
s_{2} & s_{2} s_{0} & s_{2} s_{1} & s_{2} s_{0} s_{1} & s_{2} s_{1} s_{0}
\end{array}
\end{aligned}
$$

Question: Determine the coefficient of q^{ℓ} in the generating function

$$
\begin{gathered}
f_{n}(q)=\sum_{\tilde{w} \in \widetilde{S}_{n}^{\text {C/ }}} q^{\ell(w)} . \\
f_{3}(q)=1 q^{0}+3 q^{1}+6 q^{2}+6 q^{3}+\ldots
\end{gathered}
$$

Answer: Consult your friendly computer algebra program.

DdddaaaaAAAAaaaaTTaaaaAA

Brant calls up and says: "Hey Chris, look at this data!"

$$
\begin{aligned}
f_{3}(q)= & 1+3 q+6 q^{2}+6 q^{3}+6 q^{4}+6 q^{5}+\cdots \\
f_{4}(q)= & 1+4 q+10 q^{2}+16 q^{3}+18 q^{4}+16 q^{5}+18 q^{6}+\cdots \\
f_{5}(q)= & 1+5 q+15 q^{2}+30 q^{3}+45 q^{4}+50 q^{5}+50 q^{6}+50 q^{7}+50 q^{8}+\cdots \\
f_{6}(q)= & 1+6 q+21 q^{2}+50 q^{3}+90 q^{4}+126 q^{5}+146 q^{6}+ \\
& 150 q^{7}+156 q^{8}+152 q^{9}+156 q^{10}+150 q^{11}+158 q^{12}+ \\
& 150 q^{13}+156 q^{14}+152 q^{15}+156 q^{16}+150 q^{17}+158 q^{18}+\cdots \\
f_{7}(q)= & 1+7 q+28 q^{2}+77 q^{3}+161 q^{4}+266 q^{5}+364 q^{6}+427 q^{7}+ \\
& 462 q^{8}+483 q^{9}+490 q^{10}+490 q^{11}+490 q^{12}+490 q^{13}+\cdots
\end{aligned}
$$

Notice:

- The coefficients eventually repeat.

Goals: \star Find a formula for the generating function $f_{n}(q)$. \star Understand this periodicity.

Pattern Avoidance Characterization

Key idea: (Green, 2002)
\widetilde{w} is fully commutative

\widetilde{w} is 321-avoiding.

Example. [$-4,-1,1,14]$ is NOT fully commutative because:

Game plan

Goal: Enumerate 321-avoiding affine permutations \widetilde{w}.

- Write $\widetilde{w}=w^{0} w$, where $w^{0} \in \widetilde{S_{n}} / S_{n}$ and $w \in S_{n}$.
- w^{0} determines the entries; w determines their order.

Example. For $\widetilde{w}=[-11,20,-3,4,11,0] \in \widetilde{S}_{6}$,

$$
w^{0}=[-11,-3,0,4,11,20] \text { and } w=[1,3,6,4,5,2] .
$$

- Determine which w^{0} are 321 -avoiding.
- Determine the finite w such that $w^{0} w$ is still 321-avoiding

Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$

Combinatorial interpretations of $\widetilde{S}_{n} / S_{n}$

(James and Kerber, 1981)
Given $w^{0}=\left[w_{1}, \ldots, w_{n}\right] \in \widetilde{S_{n}} / S_{n}$, we can interpret w^{0} as:

Abacus diagram

Place integers in n runners.
Circled: beads. Empty: gaps
Bijection: Given w^{0}, create an abacus where each runner has a lowest bead at w_{i}
Example:
$[-4,-3,7,10]$

Core partition
An n-core is an integer partition with no n-ribbons.
Bijection: Read the boundary steps from the abacus:

Bead $=$ vertical; Gap $=$ horiz.

Normalized abacus and 321-avoiding criterion for $\widetilde{S}_{n} / S_{n}$

We use a normalized abacus diagram; shifts all beads so that the first gap is in position $n+1$; this map is invertible.

Theorem. (H-J '09) Given a normalized abacus for $w^{0} \in \widetilde{S_{n}} / S_{n}$, where the last bead occurs in position i,
w^{0} is
fully commutative
lowest beads in runners only occur in

$$
\{1, \ldots, n\} \cup\{i-n+1, \ldots, i\}
$$

Idea:
Lowest beads in runners \leftrightarrow entries in base window.

$w(-n+1) w(-n+2)$		$w(-1) w(0)$		$w(1) w(2)$			$w(\mathrm{n}-1) \mathrm{w}(\mathrm{n})$		$w(\mathrm{n}+1) w(\mathrm{n}+2)$			$w(2 \mathrm{n}-1) \mathrm{w}(2 \mathrm{n})$	
10	10	hi	hi	lo			hi	hi	lo	10		hi	hi
lo	lo	med hi	hi		lo	med		hi	lo		med	hi	hi

Long versus short elements

Partition $\widetilde{S_{n}}$ into long and short elements:

Short elements

Lowest bead in position $i \leq 2 n$
Finitely many
Hard to count

1	2	3	4		(1)	2	3	4
5	6	7	8	5	6	7	8	
9	10	11	12	9	10	11	12	
13	14	15	16	13	14	15	16	
17	18	19	20	17	18	19	20	

Long elements
Lowest bead in position $i>2 n$
Come in infinite families
Easy to count
Explain the periodicity

Enumerating long elements

For long elements $\widetilde{w} \in \widetilde{S_{n}}$, the base window for w^{0} is $[a, a, \ldots, a, b, b, \ldots, b]$ where $1 \leq a \leq n$, and $n+2 \leq b$.

Question: Which permutations $w \in S_{n}$ can be multiplied into a w^{0} ?

- We can not invert any pairs of a's, nor any pairs of b 's. (Would create a 321-pattern with an adjacent window)
- Only possible to intersperse the a's and the b 's. How many ways to intersperse $(k) a$'s and $(n-k) b$'s?

BUT: We must also keep track of the length of these permutations. This is counted by the q-binomial coefficient:

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q)_{n}}{(q)_{k}(q)_{n-k}}, \text { where } q_{n}=(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)
$$

Enumerating long elements

After we:

- Enumerate by length all possible w^{0} with (k) a's and $(n-k) b$'s.
- Combine the Coxeter lengths by $\ell(\widetilde{w})=\ell\left(w^{0}\right)+\ell(w)$.

Then we get:
Theorem. (H-J '09) For a fixed $n \geq 0$, the generating function by length for long fully commutative elements $\widetilde{w} \in \widetilde{S}_{n}^{F C}$ is

$$
\sum q^{\ell(\widetilde{w})}=\frac{q^{n}}{1-q^{n}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}
$$

Periodicity of fully commutative elements in \widetilde{S}_{n}

Corollary. (H-J '09) The coefficients of $f_{n}(q)$ are eventually periodic with period dividing n.
When n is prime, the period is $1: \quad a_{i}=\frac{1}{n}\left(\binom{2 n}{n}-2\right)$.
Proof. For i sufficiently large, all elements of length i are long.
Our generating function is simply some polynomial over $\left(1-q^{n}\right)$:

$$
\frac{q^{n}}{1-q^{n}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}=\frac{P(q)}{1-q^{n}}=P(q)\left(1+q^{n}+q^{2 n}+\cdots\right)
$$

When n is prime, an extra factor of $\left(1+q+\cdots+q^{n-1}\right)$ cancels;

$$
\frac{1}{1-q}\left[\frac{q^{n}}{1+q+\cdots+q^{n-1}} \sum_{k=1}^{n-1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}^{2}\right]
$$

As suggested by a referee, we know that $a_{i}=P(1)=\frac{1}{n} \sum_{k=1}^{n-1}\binom{n}{k}^{2}$.

Short elements are hard

For short elements $\widetilde{w} \in \widetilde{S_{n}}$, the base window for w^{0} is $[a, \ldots, a, b, \ldots, b, c, \ldots, c]$, and there is more interaction:
(1) (2) (3) (4)

5 (6) 78
$\begin{array}{llll}9 & 10 & 11 & 12\end{array}$

No a can invert with an a or b. No c can invert with $a b$ or c.

- Count \widetilde{w} where some a intertwines with some c.
- Count $\widetilde{w} \mathrm{w} / \mathrm{o}$ intertwining and 0 descents in the b's.
- Count $\widetilde{w} \mathrm{w} / \mathrm{o}$ intertwining and 1 descent in the b's.
- Not so hard to determine the acceptable finite permutations w .
- Such as $\sum_{M \geq 0} x^{L+M+R} \sum_{\mu=1}^{M-1}\left(\left[\begin{array}{c}M \\ \mu\end{array}\right]_{q}-1\right)\left[\begin{array}{c}L+\mu \\ \mu\end{array}\right]_{q}\left[\begin{array}{c}R+M-\mu \\ M-\mu\end{array}\right]_{q}$
- Count $\widetilde{w} \mathrm{w} / \mathrm{o}$ intertwining and 2 descents in the b's.
- Count \widetilde{w} which are finite permutations. (Barcucci et al.)
- Solve functional recurrences (Bousquet-Mélou)
- Such as $D(x, q, z, s)=$

$$
N(x, q, z, s)+\frac{x q s}{1-q s}(D(x, q, z, 1)-D(x, q, z, q s))+x s D(x, q, z, s)
$$

Future Work

- Extend to $\widetilde{B_{n}}, \widetilde{C_{n}}$, and $\widetilde{D_{n}}$
- Develop combinatorial interpretations (Wait 10 minutes...)
- 321-avoiding characterization?
- Heap interpretation of fully commutative elements
- Can use Viennot's heaps of pieces theory
- Better bound on periodicity
- More combinatorial interpretations for \widetilde{W} / W
- What do you know?

Thank you!

Slides available: people.qc.cuny.edu/chanusa $>$ Talks
(1) Christopher R. H. Hanusa and Brant C. Jones.

The enumeration of fully commutative affine permutations
European Journal of Combinatorics. Vol 31, 1342-1359. (2010)
R- Christopher R. H. Hanusa and Brant C. Jones.
Abacus models for parabolic quotients of affine Coxeter groups
Anders Björner and Francesco Brenti.
Combinatorics of Coxeter Groups, Springer, 2005.

