The enumeration of fully commutative affine permutations

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Brant C. Jones, James Madison University

The affine permutations

(Finite) *n*-Permutations

 S_n has generators $\{s_1,\ldots,s_{n-1}\}$ and braid relations

Write elements in 1-line notation as a permutation of $\{1, 2, ..., n\}$. Generators transpose a pair of entries: $s_i : (i) \leftrightarrow (i+1)$. Example. $s_1 s_3 \in S_4$ is 2143

Affine *n*-Permutations

 S_n has generators $\{s_0, s_1, \dots, s_{n-1}\}$ and braid relations

The affine permutations

Affine *n*-Permutations

Write elements in 1-line notation, as a permutation of \mathbb{Z} .

Generators transpose **infinitely many** pairs of entries:

$$s_i: (\mathbf{i}) \leftrightarrow (\mathbf{i+1}) \dots (n+i) \leftrightarrow (n+i+1) \dots (-n+i) \leftrightarrow (-n+i+1) \dots$$

In \widetilde{S}_4 ,	· · · w(-4)	w(-3) w(-2) w(-1) w(0)	w(1) w(2) w(3) w(4)	w(5) w(6) w(7) w(8)	w(9)····
id	4	-3 -2 -1 0	1 2 3 4	5 6 7 8	9
s_1	4	-2 -3 -1 0	2 1 3 4	6 5 7 8	10
<i>s</i> ₀	3	-4 -2 -1 1	0 2 3 5	4 6 7 9	8
<i>s</i> ₁ <i>s</i> ₀	2	-4 -3 -1 2	0 1 3 6	4 5 7 10	8

★ Translational symmetry: $\widetilde{w}(i+n) = \widetilde{w}(i) + n$.

Therefore, \widetilde{w} is defined by the window $[\widetilde{w}(1), \widetilde{w}(2), \dots, \widetilde{w}(n)]$.

Example. In
$$\widetilde{S}_4$$
, $s_1 s_0 = [0, 1, 3, 6]$

The enumeration of fully commutative affine permutations

2011 AMS Eastern Spring Sectional Meeting
April 9, 2011 3 / 19

Fully commutative elements

Definition. An element in a Coxeter group is **fully commutative** if it has only one reduced expression (up to commutation relations).

NO BRAIDS ALLOWED!

Example. In S_4 , $s_1s_2s_3s_1$ is **not fully commutative** because

$$s_1s_2s_3s_1 \stackrel{\mathsf{OK}}{=} s_1s_2s_1s_3 \stackrel{\mathsf{BAD}}{=} s_2s_1s_2s_3$$

Question: **How many** fully commutative elements are there in S_n ?

Answer: Catalan many! (Billey, Jockusch, Stanley, 1993; Knuth, 1973)

 S_1 : **1.** id

 S_2 : **2.** id, s_1

 S_3 : **5.** id, s_1 , s_2 , s_1s_2 , s_2s_1

 S_4 : **14.** id, s_1 , s_2 , s_3 , s_1s_2 , s_2s_1 , s_2s_3 , s_3s_2 , s_1s_3 ,

 $s_1s_2s_3$, $s_1s_3s_2$, $s_2s_1s_3$, $s_3s_2s_1$, $s_2s_1s_3s_2$

The enumeration of fully commutative affine permutations

2011 AMS Eastern Spring Sectional Meeting

Enumerating fully commutative elements

Question: How many fully commutative elements are there in $\widetilde{S_n}$?

Answer: Infinitely many! (Even in \tilde{S}_3 .)

id,
$$s_1$$
, s_1 , s_2 , s_1 , s_2 , s_0 , s_1 , s_2 , s_1 , s_2 , s_1 , s_2 , s_1 , s_2 , s_2 , s_1 , s_2 , s_2 , s_1 , s_2

Multiplying the generators cyclically does not introduce braids.

This is not the right question.

Enumerating fully commutative elements

Question: How many fully commutative elements are there in S_n , with Coxeter length ℓ ?

In
$$\widetilde{S_3}$$
: id, s_1 , s_1s_0 s_2s_2 , $s_1s_0s_2$ $s_1s_2s_0$,... s_2 s_2s_0 s_2s_1 $s_2s_0s_2s_1$ $s_2s_0s_1$ $s_2s_1s_0$

Question: Determine the coefficient of q^{ℓ} in the generating function

$$f_n(q) = \sum_{\widetilde{w} \in \widetilde{S}_n^{FC}} q^{\ell(w)}.$$

$$f_3(q) = 1q^0 + 3q^1 + 6q^2 + 6q^3 + \dots$$

Answer: Consult your friendly computer algebra program.

$\mathsf{Ddddaaaa}\mathsf{AAAAaaaa}\mathsf{TTaaaaAA}$

Brant calls up and says: "Hey Chris, look at this data!"

$$f_3(q) = 1 + 3q + 6q^2 + 6q^3 + 6q^4 + 6q^5 + \cdots$$

$$f_4(q) = 1 + 4q + 10q^2 + 16q^3 + 18q^4 + 16q^5 + 18q^6 + \cdots$$

$$f_5(q) = 1 + 5q + 15q^2 + 30q^3 + 45q^4 + 50q^5 + 50q^6 + 50q^7 + 50q^8 + \cdots$$

$$f_6(q) = 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 + 150q^7 + 156q^8 + 152q^9 + 156q^{10} + 150q^{11} + 158q^{12} + 150q^{13} + 156q^{14} + 152q^{15} + 156q^{16} + 150q^{17} + 158q^{18} + \cdots$$

$$f_7(q) = 1 + 7q + 28q^2 + 77q^3 + 161q^4 + 266q^5 + 364q^6 + 427q^7 + 462q^8 + 483q^9 + 490q^{10} + 490q^{11} + 490q^{12} + 490q^{13} + \cdots$$

Notice:

► The coefficients eventually repeat.

Goals: \bigstar Find a formula for the generating function $f_n(q)$. \bigstar Understand this periodicity.

Pattern Avoidance Characterization

Key idea: (Green, 2002)

 \widetilde{w} is fully commutative \widetilde{w} is 321-avoiding.

Example. [-4, -1, 1, 14] is **NOT** fully commutative because:

	· · · w(-4)	w(-3) w(-2) w(-1) w(0)	w(1) w(2) w(3) w(4)	w(5) w(6) w(7) w(8)	w(9)···
\widetilde{w}	6	-8 -5 -3 10	-4 -1 1 14	0 3 5 18	4

Game plan

Goal: Enumerate 321-avoiding affine permutations \widetilde{w} .

- ▶ Write $\widetilde{w} = w^0 w$, where $w^0 \in \widetilde{S_n}/S_n$ and $w \in S_n$.
 - \triangleright w^0 determines the entries; w determines their order.

Example. For
$$\widetilde{w} = [-11, 20, -3, 4, 11, 0] \in \widetilde{S}_6$$
, $w^0 = [-11, -3, 0, 4, 11, 20]$ and $w = [1, 3, 6, 4, 5, 2]$.

- ▶ Determine which w^0 are 321-avoiding.
- ▶ Determine the finite w such that w^0w is still 321-avoiding

The enumeration of fully commutative affine permutations

2011 AMS Eastern Spring Sectional Meeting

Combinatorial interpretations of \tilde{S}_n/S_n

Combinatorial interpretations of \widetilde{S}_n/S_n

(James and Kerber, 1981)

Given $w^0 = [w_1, \dots, w_n] \in \widetilde{S_n}/S_n$, we can interpret w^0 as:

Abacus diagram

Place integers in *n runners*. Circled: *beads*. Empty: *gaps*

Bijection: Given w^0 , create an abacus where each runner has a lowest bead at w_i

Core partition

An *n-core* is an integer partition with no *n*-ribbons.

Bijection: Read the boundary steps from the abacus:

Bead = vertical; Gap = horiz.

Normalized abacus and 321-avoiding criterion for S_n/S_n

We use a *normalized* abacus diagram; shifts all beads so that the first gap is in position n + 1; this map is invertible.

Theorem. (H–J '09) Given a normalized abacus for $w^0 \in \widetilde{S}_n/S_n$, where the last bead occurs in position i,

$$w^0$$
 is lowest beads in runners only occur in fully commutative $\{1,\ldots,n\}\cup\{i-n+1,\ldots,i\}$

Idea: Lowest beads in runners ↔ entries in base window.

ı	w(-n+1)	w(-n+2	2)	w(-1)	w(0)	w(:	l) w(2		w(n-1)) w(n)	w(n+1) w(n+2)		w(2n-1)	w(2n)
	lo	lo		hi	hi	lo	lo		hi	hi	lo	lo		hi	hi
ĺ	lo	lo	med	hi	hi	lc	lo	med	hi	hi	lo	lo	med	hi	hi

Long versus short elements

Partition $\widetilde{S_n}$ into long and short elements:

Short elements

Lowest bead in position $i \le 2n$ Finitely many Hard to count

Long elements

Lowest bead in position i > 2nCome in infinite families Easy to count

Explain the periodicity

1234	1234
5 6 7 8	5 6 7 8
9 (10) 11 12	9 10 (11) (12)
13 (14) 15 16	13 14 (15) 16
17 18 19 20	17 18 19 20

Enumerating long elements

Question: Which permutations $w \in S_n$ can be multiplied into a w^0 ?

- ▶ We can not invert any pairs of a's, nor any pairs of b's. (Would create a 321-pattern with an adjacent window)
- ▶ Only possible to *intersperse* the *a*'s and the *b*'s.

How many ways to intersperse
$$(k)$$
 a's and $(n - k)$ b's? $\binom{n}{k}$

BUT: We must also keep track of the *length* of these permutations. This is counted by the *q*-binomial coefficient: $\binom{n}{k}_q$

$${n \brack k}_q = \frac{(q)_n}{(q)_k(q)_{n-k}},$$
 where $q_n = (1-q)(1-q^2)\cdots(1-q^n)$

Enumerating long elements

After we:

- ▶ Enumerate by length all possible w^0 with (k) a's and (n-k) b's.
- ▶ Combine the Coxeter lengths by $\ell(\widetilde{w}) = \ell(w^0) + \ell(w)$.

Then we get:

Theorem. (H–J '09) For a fixed $n \ge 0$, the generating function by length for long fully commutative elements $\widetilde{w} \in \widetilde{S}_n^{FC}$ is

$$\sum q^{\ell(\widetilde{w})} = \frac{q^n}{1 - q^n} \sum_{k=1}^{n-1} {n \brack k}_q^2.$$

Periodicity of fully commutative elements in \widetilde{S}_n

Corollary. (H–J '09) The coefficients of $f_n(q)$ are eventually periodic with period dividing n.

When *n* is prime, the period is 1: $a_i = \frac{1}{n} \left(\binom{2n}{n} - 2 \right)$.

Proof. For i sufficiently large, all elements of length i are long. Our generating function is simply some polynomial over $(1 - q^n)$:

$$\frac{q^n}{1-q^n}\sum_{k=1}^{n-1} {n \brack k}_q^2 = \frac{P(q)}{1-q^n} = P(q)(1+q^n+q^{2n}+\cdots)$$

When *n* is prime, an extra factor of $(1 + q + \cdots + q^{n-1})$ cancels;

$$\frac{1}{1-q} \left[\frac{q^n}{1+q+\cdots+q^{n-1}} \sum_{k=1}^{n-1} {n \brack k}_q^2 \right]$$

As suggested by a referee, we know that $a_i = P(1) = \frac{1}{n} \sum_{k=1}^{n-1} {n \choose k}^2$.

Short elements are hard

For short elements $\widetilde{w} \in \widetilde{S_n}$, the base window for w^0 is $[2] \stackrel{3}{\cancel{=}} 4$ $[2] \stackrel{3}{\cancel{=}} 4$ $[2] \stackrel{3}{\cancel{=}} 4$ $[2] \stackrel{5}{\cancel{=}} 6$ $[2] \stackrel{3}{\cancel{=}} 4$ $[2] \stackrel{4}{\cancel{=}} 4$ $[2] \stackrel{5}{\cancel{=}} 6$ $[2] \stackrel{7}{\cancel{=}} 8$ $[2] \stackrel{7}{\cancel{=}} 1$ $[2] \stackrel{7}{\cancel{=}} 1$ [2]

No a can invert with an a or b. No c can invert with a b or c.

- ▶ Count \widetilde{w} where some a intertwines with some c.
- ▶ Count \widetilde{w} w/o intertwining and 0 descents in the b's.
- ▶ Count \widetilde{w} w/o intertwining and 1 descent in the b's.
 - ▶ Not so hard to determine the acceptable finite permutations w.

Such as
$$\sum_{M\geq 0} x^{L+M+R} \sum_{\mu=1}^{M-1} \left(\begin{bmatrix} M \\ \mu \end{bmatrix}_q - 1 \right) \begin{bmatrix} L+\mu \\ \mu \end{bmatrix}_q \begin{bmatrix} R+M-\mu \\ M-\mu \end{bmatrix}_q$$

- ▶ Count \widetilde{w} w/o intertwining and 2 descents in the b's.
- ▶ Count \widetilde{w} which are finite permutations. (Barcucci et al.)
 - Solve functional recurrences (Bousquet-Mélou)
 - ► Such as $D(x, q, z, s) = N(x, q, z, s) + \frac{xqs}{1-qs} (D(x, q, z, 1) D(x, q, z, qs)) + xsD(x, q, z, s)$

The enumeration of fully commutative affine permutations

2011 AMS Eastern Spring Sectional Meeting

Future Work

- ightharpoonup Extend to $\widetilde{B_n}$, $\widetilde{C_n}$, and $\widetilde{D_n}$
 - Develop combinatorial interpretations (Wait 10 minutes...)
 - 321-avoiding characterization?
- ▶ Heap interpretation of fully commutative elements
 - Can use Viennot's heaps of pieces theory
 - Better bound on periodicity
- \blacktriangleright More combinatorial interpretations for W/W
 - What do you know?

Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

- Christopher R. H. Hanusa and Brant C. Jones.
 The enumeration of fully commutative affine permutations

 European Journal of Combinatorics. Vol 31, 1342–1359. (2010)
- Christopher R. H. Hanusa and Brant C. Jones.
 Abacus models for parabolic quotients of affine Coxeter groups
- Anders Björner and Francesco Brenti. Combinatorics of Coxeter Groups, Springer, 2005.

April 9, 2011 19 / 19