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The affine permutations

(Finite) n-Permutations
Snh has generators {s1,...,s,_1} and braid relations

Write elements in 1-line notation as a permutation of {1,2,...,n}.
Generators transpose a pair of entries: s; : (i) < (i + 1).
Example. sis3 € S4is 2143

A/ffine n-Permutations
Sn has generators {sg, s1,...,S,—1} and braid relations
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Fully Commutative Elements in S\,7

The affine permutations

Affine n-Permutations

Write elements in 1-line notation, as a permutation of Z.
Generators transpose infinitely many pairs of entries:

Si - (I) — (i+1) (n+i) — (n—|—i—|—1) (—n+i) — (—n+i+1)

In Sy, - w(-3) WD) w(0) | w(l) w(2) w(3) w(4) | w(5) w(6) w(7) w(8)
id | .. -3 10|12 3 415 7 8
st | .- -2 10 21 3 416 7 8
o | - -4 11102 35| 4 709

| siso |- 0 | 4 1 2]0136]4 7 10 | \

% Translational symmetry: w(i+ n) = w(i) + n.
Therefore, w is defined by the window [w(1), w(2),...,w(n)].
Example. In Sa, S150 = [0,1,3,6]
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Fully Commutative Elements in §n

Fully commutative elements

Definition. An element in a Coxeter group is fully commutative if
it has only one reduced expression (up to commutation relations).

INO BRAIDS ALLOWED! |

Example. In S4, sisps3s1 is not fully commutative because

OK BAD
51525351 = 51525153 = 52515253

Question: How many fully commutative elements are there in 5,7

Answer: Catalan many! (Billey, Jockusch, Stanley, 1993; Knuth, 1973)

51: 1. id
52: 2. id, S1
531 5 IC|, 51, So, 5152, S$251

Sa: 14. id, s1, sp, S3, S152, S251, S253, S352, 5153,
515253, 515352, 525153, S35251, S2515352
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Enumerating fully commutative elements

Question: How many fully commutative elements are there in 5,7
Answer: Infinitely many! (Even in S3.)
id, 51, 5152, 515250, $1525051, 51525051525 - - -

Multiplying the generators cyclically does not introduce braids.

This is not the right question.
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Enumerating fully commutative elements

Question: How many fully commutative elements are there in S,
with Coxeter length £7

S0 5051 SpS2 S0S1S2 SpS2s1
In S3: id, s1 , 5150 S1S , 515052 S150S0 .- -
52 5250 5251 525051 525150

Question: Determine the coefficient of g° in the generating function

fn(q): Z qZ(W)'

weSHe
f3(q) = 1¢° + 3q¢* +64° +6¢° + ...
Answer: Consult your friendly computer algebra program.
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Fully Commutative Elements in §n

DdddaaaaAAAAaaaaT TaaaaAA

Brant calls up and says: “Hey Chris, look at this data!”

f3(q) =1+3g+6¢g*>+6¢>+0g*+ ¢+ ---

fa(q) = 1+ 4q + 10g® + 16¢° + 18qg* + 16¢° + 184° + - - -

fs(q) = 1+5q+15¢° +30qg3 +45¢* +50¢° +50¢° + " q"+ ¥+ --

fs(q) = 1+ 6q + 21> + 50q> + 90g* + 1264° + 1464° +
150q" + 15642 + 152¢° + 1564¢'° 4 150¢** + 158q* +
150913 + 1564'* + 152q'° + 156¢1% + 150417 + 15848 + - .-

f1(q) = 1+7q +28q% + 77q> + 161g* + 2664° 4 364q° + 427q" +
46248 + 483q° +490¢° + 490g + 1 00g2 4+ g3 4.,

Notice:

» The coefficients eventually repeat.

Goals: % Find a formula for the generating function f,(q).
% Understand this periodicity.
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Fully Commutative Elements in §n

Pattern Avoidance Characterization

Key idea: (Green, 2002)

w is fully commutative — w is 321-avoiding.

Example. [-4,—1,1,14] is NOT fully commutative because:

w(-3) w(-2) w(-1) w(0) w(l) w(2) w(3) w(4) w(5) w(6) w(7) w(8)

W - 8 5 -3[10]| -4 -1[1]14 [[o] 3 5 18
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Fully Commutative Elements in S\,7
Game plan

Goal: Enumerate 321-avoiding affine permutations w.

» Write w = w®w, where w® € S,/S, and w € S,,.
» w0 determines the entries; w determines their order.

Example. For w = [—11,20,—3,4,11,0] € S,
w® = [~11,-3,0,4,11,20] and w = [1,3,6,4,5,2].

» Determine which w° are 321-avoiding.

» Determine the finite w such that w®w is still 321-avoiding
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Combinatorial Interpretations

Combinatorial interpretations of §,,/S,7

[-4,-3,7,10]

Wi ndpw 8888
109D HSIS notation 999
lole}
reduced abacus 80
expression diagram

elements of
S/S

bounded core
partition partition _—
% root lattice -
point o

(-1,2,1,-2)
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Combinatorial Interpretations

Combinatorial interpretations of §,,/S,7

(James and Kerber, 1981)

Given w0 = [wy,...,wy] € fST,/S,,, we can interpret w9 as:
Abacus diagram Core partition
Place integers in n runners. An n-core is an integer
Circled: beads. Empty: gaps partition with no n-ribbons.

Bijection: Given w®, create an Bijection: Read the boundary

abacus where each runner has steps from the abacus:

a lowest bead at w; Bead = vertical; Gap = horiz.

Example: [

<
[-4,-3,7,100 ©
S

OO«
o aeh

OO@-~

OO ¢ 1]
5 &) s
9 W u

13 14 15 16
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Combinatorial Interpretations

Normalized abacus and 321-avoiding criterion for §,,/S,7

) . DAHAG LR
We use a normalized abacus diagram; Q%g @@%
shifts all beads so that the first gap is \5%@ C oy e w%@
in position n + 1; this map is invertible. . @« = v s om

Theorem. (H-J '09) Given a normalized abacus for w® € /SV,,/S ,
where the last bead occurs in position 1/,
0

w" is lowest beads in runners only occur in
ully commutative {1,....,n}U{i—n+1,... i}
Idea: Lowest beads in runners < entries in base window.
w(-n+1) w(-1) w(0) w(l) w(2) w(n-1) w(n) w(n+1) w(2n-1) w(2n)
lo hi  hi lo lo hi  hi lo hi  hi
lo hi [hi] | o o hi hi hi  hi
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Enumeration

Long versus short elements

Partition S, into long and short elements:

Short elements
Lowest bead in position i < 2n
Finitely many
Hard to count

OOO® OO®
5 (6) 7 8 5 6 (D)

9 10 11 12 9 10 11 12
13 14 15 16 13 14 15 16
17 18 19 20 17 18 19 20

The enumeration of fully commutative affine permutations

Long elements
Lowest bead in position i > 2n
Come in infinite families
Easy to count
Explain the periodicity

OGO OGE®
5@7 8 5 6@
911 12 9 10@@
1315 6 13 14@16

17 18 19 20 17 18 19 20
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Enumeration

Enumerating long elements

N OOe®
For long elements w € S, the base window for w? is Z ;%

[a,a,...,a,b,b,...,b] where 1 <a<n,and n+2<b. 4 u @
17 18 19 20

Question: Which permutations w € S, can be multiplied into a w°?

» We can not invert any pairs of a's, nor any pairs of b's.
(Would create a 321-pattern with an adjacent window)
» Only possible to intersperse the a's and the b's.

How many ways to intersperse (k) a's and (n— k) b's? ()
BUT: We must also keep track of the /ength of these permutations.
This is counted by the g-binomial coefficient: [Z]q
(1 = @tars where an = (1= @)1 = ¢%)+- (1= 0")
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Enumerating long elements

After we:
» Enumerate by length all possible w® with (k) a's and (n — k) b's.
» Combine the Coxeter lengths by £(w) = £(w°) + £(w).

Then we get:

Theorem. (H-J '09) For a fixed n > 0, the generating function by
length for /ong fully commutative elements w € S/C is

n n—1
Z qZ(\Tv) _ q n
1—qgn k

k=1

2

q
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Enumeration

Periodicity of fully commutative elements in S,

Corollary. (H-J '09) The coefficients of f,(q) are eventually
periodic with period dividing n.
When n is prime, the period is 1: aj = %((2:) — 2).

Proof. For i sufficiently large, all elements of length i are long.
Our generating function is simply some polynomial over (1 — g"):

n—1 2
L i), T PO )
k=1 q

n

When n is prime, an extra factor of (1+ g+ --- + q" 1) cancels;
1 q" 2
1—g 1+q+~~+q”1kz_:1[k]q

As suggested by a referee, we know that a; = P(1) = %ZZ;} (Z)2

2011 AMS Eastern Spring Sectional Meeting
April 9, 2011 16 /19

The enumeration of fully commutative affine permutations

Christopher R. H. Hanusa  Queens College, CUNY



Enumeration

Short elements are hard

For short elements w € S,,, the base window for w9 is OO
[a,...,a,b,...,b,c,...,c], and there is more interaction: @
9 10 11 12
No a can invert with an a or b. No ¢ can invert with a b or c.
» Count w where some a intertwines with some c.

v

Count w w/o intertwining and 0 descents in the b's.
Count w w/o intertwining and 1 descent in the b's.
» Not so hard to determine the acceptable finite permutations w.
> Such as 3o X MRS (M 1) [H1] [ 0]
Count w w/o intertwining and 2 descents in the b's.
Count w which are finite permutations. (Barcucci et al.)
» Solve functional recurrences (Bousquet-Mélou)
» Such as D(x,q,z,s) =

N(x,q,z,s) + ff’;s (D(x, q,z,1) — D(x, q, z, qs)) + xsD(x, q,z,s)

v

q

vy
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Future Work

» Extend to é: a and Z)v,,

» Develop combinatorial interpretations (Wait 10 minutes. . .)
» 321-avoiding characterization?

» Heap interpretation of fully commutative elements
» Can use Viennot's heaps of pieces theory
» Better bound on periodicity

» More combinatorial interpretations for W/W
» What do you know?
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Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks
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