$$
\begin{aligned}
& \text { Let's count: } \\
& \text { Domino tilings }
\end{aligned}
$$

Christopher R. H. Hanusa
 Queens College, CUNY

Domino Tilings

Today we'll discuss domino tilings, where:

- Our board is made up of squares.
- Our dominoes have no spots and all look the same.
- (Although, I will color the dominoes.)

- One domino covers up two adjacent squares of the board.

A tiling is a placement of non-overlapping dominoes which completely covers the board.

$2 \times n$ board

Question. How many tilings are there on a $2 \times n$ board?

Definition. Let $f_{n}=\#$ of ways to tile a $2 \times n$ board.
$f_{0}=1$
$f_{1}=1$
$f_{2}=2$

$f_{3}=3$
$f_{4}=5$

Why Fibonacci?

Fibonacci numbers f_{n} satisfy

- $f_{0}=f_{1}=1$
- $f_{n}=f_{n-1}+f_{n-2}$

There are f_{n} tilings of a $2 \times n$ board
Every tiling ends in either:

- one vertical domino

- How many? Fill the initial $2 \times(n-1)$ board in f_{n-1} ways.
- two horizontal dominoes

- How many? Fill the initial $2 \times(n-2)$ board in f_{n-2} ways.

Total: $f_{n-1}+f_{n-2}$

Fibonacci identities

We have a new definition for Fibonacci:

$$
f_{n}=\text { the number of tilings of a } 2 \times n \text { board. }
$$

This combinatorial interpretation of the Fibonacci numbers provides a framework to prove identities.

- Did you know that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$?

$$
\begin{aligned}
& \begin{array}{llllllllllllll}
f_{1} & f_{2} & f_{3} & f_{4} & f_{5} & f_{6} & f_{7} & f_{8} & f_{9} & f_{10} & f_{11} & f_{12} & f_{13} & f_{14}
\end{array} \\
& \begin{array}{llllllllllllll}
1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 & 89 & 144 & 233 & 377 & 610
\end{array} \\
& f_{14}=f_{7}^{2}+f_{6}^{2} \\
& 610=441+169
\end{aligned}
$$

Proof that $f_{2 n}=\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$

Proof. How many ways are there to tile a $2 \times(2 n)$ board?
Answer 1. Duh, $f_{2 n}$.
Answer 2. Ask whether there is a break in the middle of the tiling:

For a total of $\left(f_{n}\right)^{2}+\left(f_{n-1}\right)^{2}$ tilings.
We counted $f_{2 n}$ in two different ways, so they must be equal.

Further reading:

© Arthur T. Benjamin and Jennifer J. Quinn Proofs that Really Count, MAA Press, 2003.

$3 \times n$ board

Question. How many tilings are there on a $3 \times n$ board?

Definition. Let $t_{n}=\#$ of ways to tile a $3 \times n$ board.

$$
\begin{aligned}
& t_{0}=1 \\
& t_{1}=0 \\
& t_{2}=3 \\
& t_{3}=0 \\
& t_{4}=11 \\
& t_{5}=0 \\
& t_{6}=41 \\
& t_{7}=0
\end{aligned}
$$

Hunting sequences

Question. How many tilings are there on a $3 \times n$ board?

- Our Sequence: 1, 3, 11, 41, ...

Go to the Online Encyclopedia of Integer Sequences (OEIS).
http://oeis.org/

- (Search) Information on a sequence
- Formula
- Other interpretations
- References
- (Browse) Learn new math
- (Contribute) Submit your own!

The transfer matrix method

Question. How many tilings are there on a $3 \times n$ board?
Question. How can we count these tilings intelligently?
Answer. Use the transfer matrix method.

- Like a finite state machine.
- Build the tiling dynamically one column at a time.
- A "state" corresponds to which squares are free in a column.
- Filling the free squares "transitions" to the next state.

The transfer matrix for the $3 \times n$ board

For $3 \times n$ tilings, the possible states are: \square

And the possible transitions are:

Use a matrix to keep track of how many transitions there are.

The power of the transfer matrix

Multiply by \mathbf{A}. This shows that four steps after \boxplus :

$$
\begin{aligned}
& t_{1}=0 \\
& t_{2}=3 \\
& t_{3}=0 \\
& t_{4}=11 \\
& t_{5}=0
\end{aligned}
$$

- A complete tiling of $3 \times n \leftrightarrow \quad$ ends in \boxplus $t_{6}=153$
- \# of tilings of $3 \times n \quad \leftrightarrow$ first entry of $\mathbf{A}^{n}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$
$t_{7}=0$
$t_{8}=571$
$t_{9}=0$
We can calculate values. Is there a formula?

A formula for t_{n}

Solve by diagonalizing A:

$$
\begin{aligned}
\mathbf{A} & =\mathbf{P}^{-1} \mathbf{D P} \\
\mathbf{A}^{n} & =\mathbf{P}^{-1} \mathbf{D}^{n} \mathbf{P}
\end{aligned}
$$

$$
\mathbf{D}=\left[\begin{array}{cccc}
-\sqrt{2+\sqrt{3}} & 0 & 0 & 0 \\
0 & \sqrt{2+\sqrt{3}} & 0 & 0 \\
0 & 0 & -\sqrt{2-\sqrt{3}} & 0 \\
0 & 0 & 0 & \sqrt{2-\sqrt{3}}
\end{array}\right]
$$

We conclude:

$$
t_{2 n}=\frac{1}{\sqrt{6}}(\sqrt{2-\sqrt{3}})^{2 n+1}+\frac{1}{\sqrt{6}}(\sqrt{2+\sqrt{3}})^{2 n+1}
$$

- Method works for rectangular boards of fixed width

On a chessboard

Back to our original question:
How many domino tilings are there on an 8×8 board?

How many people think there are more than:

$$
1,000
$$

How to determine?

A Chessboard Graph

A graph is a collection of vertices and edges.
A perfect matching is a selection of edges which pairs all vertices.
Create a graph from the chessboard:

A tiling of the chessboard \longleftrightarrow A perfect matching of the graph.

Chessboard Graph

Question. How many perfect matchings on the chessboard graph?
Create G's adjacency matrix. (Rows: white w_{i}, Columns: black b_{j})

$$
\text { Define } m_{i, j}= \begin{cases}1 & \text { if } w_{i} b_{j} \text { is an edge } \\ 0 & \text { if } w_{i} b_{j} \text { is not an edge }\end{cases}
$$

A perfect matching: Choose one in each row and one in each column. Sound familiar?

Counting domino tilings

- To count domino tilings,
- Take a determinant of a matrix
- To find a formula for the determinant,
- Analyze the structure of the matrix.

Answer: For a $2 m \times 2 n$ chessboard,

$$
\# R_{2 m \times 2 n}=\prod_{j=1}^{n} \prod_{k=1}^{m}\left(4 \cos ^{2} \frac{\pi j}{2 n+1}+4 \cos ^{2} \frac{\pi k}{2 m+1}\right)
$$

History:

- 1930's: Chemistry and Physics
- 1960's: Determinant method of Kasteleyn and Percus

HOLeY Chessboard!

One last question: How many domino tilings on this board?

We've removed two squares - but there are now 0 tilings!

- Every domino covers two squares (1 black and 1 white)
- There are now $\mathbf{3 2}$ black squares and $\mathbf{3 0}$ white squares.

Aztec diamonds

This board is called an Aztec diamond $\left(A Z_{4}\right)$

How many domino tilings are there on $A Z_{n}$?

$$
2^{\binom{n+1}{2}}=2^{\frac{n(n+1)}{2}}
$$

Random tiling of an Aztec diamond

A random tiling has a surprising structure:

Pictures from: http://tuvalu.santafe.edu/~moore/
The arctic circle phenomenon.

Thank you!

Slides available: people.qc.cuny.edu/chanusa $>$ Talks

* Arthur T. Benjamin and Jennifer J. Quinn Proofs that Really Count, MAA Press, 2003.
(Online Encyclopedia of Integer Sequences http://oeis.org

Random Tilings (James Propp) http://faculty.uml.edu/jpropp/tiling/

