Let's count: Domino tilings

Christopher R. H. Hanusa Queens College, CUNY

 $2 \times n$

Domino Tilings

Today we'll discuss domino tilings, where:

- Our board is made up of squares.
- Our dominoes have no spots and all look the same.
 - (Although, I will color the dominoes.)

One domino covers up two adjacent squares of the board.

A tiling is a placement of non-overlapping dominoes which completely covers the board.

$2 \times n$ board

Question. How many tilings are there on a $2 \times n$ board?

Definition. Let $f_n = \#$ of ways to tile a $2 \times n$ board.

$$f_0 = 1$$

$$f_1 = 1$$

$$f_2 = 2$$

$$f_3 = 3$$

$$f_4 = 5$$

Why Fibonacci?

Fibonacci numbers f_n satisfy

$$\checkmark$$

$$f_n = f_{n-1} + f_{n-2}$$

There are f_n tilings of a $2 \times n$ board

Every tiling ends in either:

one vertical domino

- **How many?** Fill the initial $2 \times (n-1)$ board in f_{n-1} ways.
- two horizontal dominoes

How many? Fill the initial $2 \times (n-2)$ board in f_{n-2} ways.

Total: $f_{n-1} + f_{n-2}$

2 × n 3 × n n × n Aztec

Fibonacci identities

We have a new definition for Fibonacci:

 f_n = the number of tilings of a 2 × n board.

This *combinatorial interpretation* of the Fibonacci numbers provides a framework to prove identities.

▶ Did you know that $f_{2n} = (f_n)^2 + (f_{n-1})^2$?

$$f_1$$
 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9 f_{10} f_{11} f_{12} f_{13} f_{14} 1 2 3 5 8 **13 21** 34 55 89 144 233 377 **610**

$$f_{14} = f_7^2 + f_6^2$$

$$610 = 441 + 169$$

 $2 \times n$

Proof that $f_{2n} = (f_n)^2 + (f_{n-1})^2$

Proof. How many ways are there to tile a $2 \times (2n)$ board?

Answer 1. Duh, f_{2n} .

Answer 2. Ask whether there is a break in the middle of the tiling:

Fither there is

Or there isn't...

For a total of $(f_n)^2 + (f_{n-1})^2$ tilings.

We counted f_{2n} in two different ways, so they must be equal.

Further reading:

Arthur T. Benjamin and Jennifer J. Quinn Proofs that Really Count, MAA Press, 2003.

$3 \times n$ board

Question. How many tilings are there on a $3 \times n$ board?

Definition. Let $t_n = \#$ of ways to tile a $3 \times n$ board.

$$t_0 = 1$$

$$t_0 - 1$$

$$t_2 = 3$$

$$t_3 = 0$$

$$t_3 =$$

$$t_4 = 11$$

$$t_5 = 0$$

$$t_6 = 41$$

$$t_7 = 0$$

Hunting sequences

Question. How many tilings are there on a $3 \times n$ board?

Our Sequence: 1, 3, 11, 41, . . .

Go to the Online Encyclopedia of Integer Sequences (OEIS).

- ► (Search) Information on a sequence
 - Formula
 - Other interpretations
 - References
- ▶ (Browse) Learn new math
- (Contribute) Submit your own!

 $3 \times n$ $n \times n$ Aztec

The transfer matrix method

Question. How many tilings are there on a $3 \times n$ board?

Question. How can we count these tilings intelligently?

Answer. Use the transfer matrix method.

- ▶ Like a finite state machine.
- Build the tiling dynamically one column at a time.
- ▶ A "state" corresponds to which squares are free in a column.
- ▶ Filling the free squares "transitions" to the next state.

 $3 \times n$

The transfer matrix for the $3 \times n$ board

For $3 \times n$ tilings, the possible states are:

And the possible transitions are:

Use a matrix to keep track of how many transitions there are.

The **power** of the transfer matrix

Multiply by A. This shows that four steps after \boxplus :

- ▶ A complete tiling of $3 \times n \leftrightarrow$ ends in \blacksquare
- # of tilings of $3 \times n \longleftrightarrow \text{first entry of } \mathbf{A}^n \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad t_7 = 0$

We can calculate values. Is there a formula?

$$t_1 = 0$$

$$t_2 = 3$$

$$t_3 = 0$$

$$t_4 = 11$$

$$t_5 = 0$$

$$t_6 = 153$$

$$t_7 = 0$$

$$t_8 = 571$$

$$t_9 = 0$$

$$t_{10} = 2131$$

Solve by diagonalizing A:

$$\mathbf{A} = \mathbf{P}^{-1}\mathbf{D}\mathbf{P}$$

$$\mathbf{A}^{n} = \mathbf{P}^{-1}\mathbf{D}^{n}\mathbf{P}$$

$$\mathbf{D} = \begin{bmatrix} -\sqrt{2+\sqrt{3}} & 0 & 0 & 0 \\ 0 & \sqrt{2+\sqrt{3}} & 0 & 0 \\ 0 & 0 & -\sqrt{2-\sqrt{3}} & 0 \\ 0 & 0 & 0 & \sqrt{2-\sqrt{3}} \end{bmatrix}$$

We conclude:

$$t_{2n} = \frac{1}{\sqrt{6}} \left(\sqrt{2 - \sqrt{3}} \right)^{2n+1} + \frac{1}{\sqrt{6}} \left(\sqrt{2 + \sqrt{3}} \right)^{2n+1}$$

▶ Method works for rectangular boards of fixed width

Let's count: Domino tilings

Manhattan College ΠΜΕ & ΤΣΚ Induction

On a chessboard

Back to our original question:

How many domino tilings are there on an 8×8 board?

How many people think there are more than:

1,000

How to determine?

 \times n 3 \times n n \times n Aztec

A Chessboard Graph

A graph is a collection of vertices and edges.

A *perfect matching* is a selection of edges which pairs all vertices.

Create a graph from the chessboard:

A tiling of the chessboard \longleftrightarrow A perfect matching of the graph.

Chessboard Graph

Question. How many perfect matchings on the chessboard graph?

Create G's adjacency matrix. (Rows: white w_i , Columns: black b_i)

Define
$$m_{i,j} = \begin{cases} 1 & \text{if } w_i b_j \text{ is an edge} \\ 0 & \text{if } w_i b_j \text{ is not an edge} \end{cases}$$

A perfect matching: Choose one in each row and one in each column. Sound familiar?

Counting domino tilings

- To count domino tilings,
 - Take a determinant of a matrix
- ▶ To find a formula for the determinant.
 - Analyze the structure of the matrix.

Answer: For a $2m \times 2n$ chessboard.

$$\#R_{2m\times 2n} = \prod_{j=1}^{n} \prod_{k=1}^{m} \left(4\cos^{2} \frac{\pi j}{2n+1} + 4\cos^{2} \frac{\pi k}{2m+1} \right)$$

History:

- ▶ 1930's: Chemistry and Physics
- ▶ 1960's: Determinant method of Kasteleyn and Percus

HOLeY Chessboard!

One last question: How many domino tilings on this board?

We've removed two squares — but there are now $oldsymbol{0}$ tilings!

- ▶ Every domino covers two squares (1 black and 1 white)
- ▶ There are now **32** black squares and **30** white squares.

 \times n 3 \times n n \times n Aztec

Aztec diamonds

This board is called an Aztec diamond (AZ₄)

How many domino tilings are there on AZ_n ?

$$2^{\binom{n+1}{2}} = 2^{\frac{n(n+1)}{2}}$$

 \times n 3 \times n n \times n Aztec

Random tiling of an Aztec diamond

A random tiling has a surprising structure:

Pictures from: http://tuvalu.santafe.edu/~moore/

The arctic circle phenomenon.

⟨n 3 × n n × n Aztec

Thank you!

Slides available: people.qc.cuny.edu/chanusa > Talks

- Arthur T. Benjamin and Jennifer J. Quinn Proofs that Really Count, MAA Press, 2003.
- Online Encyclopedia of Integer Sequences http://oeis.org
- Random Tilings (James Propp)
 http://faculty.uml.edu/jpropp/tiling/