A quasi-polynomial q-Queens result and related Kronecker products of matrices

Christopher R. H. Hanusa Queens College, CUNY

Joint work with Seth Chaiken, University at Albany
and Tom Zaslavsky, Binghamton University

$$
\text { people.qc.cuny.edu/chanusa }>\text { Talks }
$$

The n-Queens Problem

Motivating question:
Can you place n nonattacking queens on an $n \times n$ chessboard?

The n-Queens Problem

Motivating question:
Can you place n nonattacking queens on an $n \times n$ chessboard?

Q: In how many ways can you place n nonattacking queens?

n	1	2	3	4	5	6	7	8	9	10
$\#$	1	0	0	2	10	4	40	92	352	724

The q-Queens Problem and generalizations

Let's generalize.

- Fix the number of queens. (q)
- Let the size of the board vary. $(n \times n)$

Question: Determine the number of ways in which you can place q nonattacking queens on an $n \times n$ chessboard as a function of n.

Question: Why stop there?

The q-Queens Problem and generalizations

A problem will have three elements:

- A piece. (A set of basic moves.)
- A board. (A convex polygon and its dilations.)
- A number. (A number of pieces to arrange.)

A piece P moves from $z=(x, y)$ to $z+\alpha m_{r}$ for $m_{r} \in \mathbf{M}, \alpha \in \mathbb{Z}$
Two pieces in z_{i} and z_{j} are attacking if $z_{i}-z_{j}=\alpha m_{r}$.
Examples:
新 Queens: $\mathbf{M}=\{(1,0),(1,1),(0,1),(1,-1)\}$
亶 Bishops: $\mathbf{M}=\{(1,1),(1,-1)\}$
Nightrider: $\mathbf{M}=\{(2,1),(1,2),(2,-1),(1,-2)\}$

The q-Queens Problem and generalizations

A problem will have three elements:

- A piece. (A set of basic moves.)
- A board. (A convex polygon and its dilations.)
- A number. (A number of pieces to arrange.)

A board is the set of integral points on the interior of an integral multiple of a rational convex polygon $\mathcal{B} \subset \mathbb{R}^{2}$

The q-Queens Problem and generalizations

Question: Given a piece P, a polygon \mathcal{B}, and a number q,
Determine the number of ways in which you can place q nonattacking P pieces on the board $t \mathcal{B}^{\circ}$ as a function of t.

In the original q-Queens Problem,

- $\mathcal{B}=[0,1]^{2}$
- $q=q$

The $n \times n$ case corresponds to $t=(n+1)$.

The q-Queens Problem and generalizations

Theorem: (Chaiken, Zaslavsky, 2005)
Given P, \mathcal{B}, and q, the number of placements of q nonattacking
P pieces inside $t \mathcal{B}$ is a quasipolynomial function of t.

A quasipolynomial is a function $f(t)$ on $t \in \mathbb{Z}_{+}$such that

$$
f(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0}
$$

where each c_{i} is periodic.

Example: $f(t)= \begin{cases}t^{2}+3 t+2 & \text { for even } t \\ t^{2}-2 t+1 & \text { for odd } t\end{cases}$

q-Queens proof sketch

Very briefly:
The rules of nonattack correspond to forbidden hyperplanes in $\mathbb{R}^{2 q}$.
Inside-out polytope theory gives a quasipolynomial function of t.

q-Queens proof sketch

Less briefly:

- Goal: Count allowed unordered configuration of pieces.
- Instead, count allowed ordered configurations of $z_{i}=\left(x_{i}, y_{i}\right)$.
- A configuration is a point $\left(x_{1}, y_{1}, \ldots, x_{q}, y_{q}\right) \in \mathbb{Z}^{2 q} \cap t \mathcal{B}^{q}$
- Two pieces are attacking when $\left(z_{j}-z_{i}\right) \cdot m_{r}^{\perp}=0$.
- There are $\binom{q}{2} N$ of these forbidden hyperplanes in $\mathbb{R}^{2 q}$
- Count lattice points in $t \mathcal{B}^{q}$ avoiding \mathcal{H}.
- This is a direct application of inside-out polytope theory Counted by a quasipolynomial with certain properties.

Inside-out polytopes

(Beck, Zaslavsky, 2006) An inside-out polytope (\mathcal{P}, \mathcal{H})

- Builds upon ideas of Ehrhart theory.
- \mathcal{P} is a convex polytope
- Vertices of \mathcal{P} have rational coordinates
- \mathcal{H} is an arrangement of hyperplanes dissecting \mathcal{P}.
- The \mathcal{H} have rational equations.
- The \mathcal{H} are homogeneous.
- Counts $\left(t^{-1}\right)$-fractional points inside \mathcal{P}.

| integral points
 inside $t \mathcal{B}^{q}$ |
| :---: | | t^{-1}-fractional points |
| :---: |
| inside \mathcal{B}^{q} |

Inside-out polytopes

Conclusion: The number of lattice points inside \mathcal{P} avoiding \mathcal{H} is a quasipolynomial function of t with

- degree: $\operatorname{dim}(\mathcal{P})$.
- leading coefficient: volume of \mathcal{P}.

Therefore: The number nonattacking configurations of q pieces P inside $t \mathcal{B}$ is a quasipolynomial function of t with

- degree: $\operatorname{dim}\left(\mathcal{B}^{q}\right)=2 q$.
- leading coefficient: $|\mathcal{B}|^{q} / q$!. \longleftarrow Now unordered!

But what does this mean?

So, we have a solution to q-Queens and n-Queens?

- No. The theorem only proves existence.

We must determine the periodic coefficients c_{i}.
Game plan:

- Determine the period of the coefficients.
- Compute initial data to determine the formula.

Rooks and bishops

Notation: Write $u_{P}(q ; n)$ for the number of (unlabeled) nonattacking configurations of q pieces P on an $n \times n$ board.

Translation: $\mathcal{B}=[0,1]^{2}$ and $t=n+1$, implying:

- degree of $u_{P}(q ; n)$ is $2 q$.
- leading coefficient of $u_{P}(q ; n)$ is $1 / q$!.

For a fixed q, we expect a formula of the form:

$$
u_{P}(q ; n)=\frac{1}{q!} n^{2 q}+c_{2 q-1} n^{2 q-1}+\cdots+c_{1} n+c_{0}
$$

Classic result for rooks R :

$$
u_{R}(q ; n)=q!\binom{n}{q}^{2}
$$

Rooks and bishops

悤 For bishops B ：
－We will calculate that the period divides 2^{q-1} ．（stay tuned！）

- One 惫：$u_{B}(1 ; n)=n^{2}$ ．
- Two 鼻：quasipolynomial of degree 4，period 1 or 2 ．
－$u_{B}(2 ; n)=\frac{1}{2} n^{4}+c_{3} n^{3}+c_{2} n^{2}+c_{1} n+c_{0}$ ．
－Initial data for $u_{B}(2 ; n)$ ：

n	1	2	3	4	5	6	7	8
$u_{B}(2 ; n)$	0	4	26	92	240	520	994	1736

$$
u_{B}(2 ; n)=\frac{1}{2} n^{4}-\frac{2}{3} n^{3}+\frac{1}{2} n^{2}-\frac{1}{3} n .
$$

Rooks and bishops

䡒 (CHZ 20??) For bishops B, the period divides 2 .

$$
\begin{aligned}
u_{B}(1 ; n)= & n^{2} . \\
u_{B}(2 ; n)= & \frac{n^{4}}{2}-\frac{2 n^{3}}{3}+\frac{n^{2}}{2}-\frac{n}{3} \\
u_{B}(3 ; n)= & \left\{\frac{n^{6}}{6}-\frac{2 n^{5}}{3}+\frac{5 n^{4}}{4}-\frac{5 n^{3}}{3}+\frac{4 n^{2}}{3}-\frac{2 n}{3}+\frac{1}{8}\right\}-(-1)^{n} \frac{1}{8} . \\
u_{B}(4 ; n)= & \left\{\frac{n^{8}}{24}-\frac{n^{7}}{3}+\frac{11 n^{6}}{9}-\frac{29 n^{5}}{10}+\frac{355 n^{4}}{72}-\frac{35 n^{3}}{6}+\frac{337 n^{2}}{72}-\frac{73 n}{30}+\frac{1}{2}\right\} \\
& -(-1)^{n}\left\{\frac{n^{2}}{8}-\frac{n}{2}+\frac{1}{2}\right\} . \\
u_{B}(5 ; n)= & \left\{\frac{n^{10}}{120}-\frac{n^{9}}{9}+\frac{49 n^{8}}{72}-\frac{118 n^{7}}{45}+\frac{523 n^{6}}{72}-\frac{2731 n^{5}}{180}+\frac{3413 n^{4}}{144}-\frac{4853 n^{3}}{180}\right. \\
& \left.+\frac{2599 n^{2}}{120}-\frac{1321 n}{120}+\frac{9}{4}\right\}-(-1)^{n}\left\{\frac{n^{4}}{16}-\frac{7 n^{3}}{12}+\frac{17 n^{2}}{8}-\frac{85 n}{24}+\frac{9}{4}\right\} .
\end{aligned}
$$

Finding the quasipolynomial period

- The period of the quasipolynomial depends on the vertices of the inside-out polytope.
- If a vertex has denominator $d \rightsquigarrow$ the period depends on d.
- Expect: Period divides the Icm over all d_{v}.

Question. How to find the vertices?
Answer. Linear algebra!
Use a matrix to determine intersections of

- The forbidden hyperplanes (for each move $\left.m_{r}^{\perp}=\left(m_{r 1}, m_{r 2}\right)\right)$
- Equations: $m_{r}^{\perp} \cdot\left(\left(x_{j}, y_{j}\right)-\left(x_{i}, y_{i}\right)\right)=0$
- The faces of the polytope (defined by $a_{j} x+b_{j} y \leq \beta_{j}$)
- Equations: $\left(a_{j}, b_{j}\right) \cdot\left(x_{i}, y_{i}\right) \leq \beta_{j}$

Finding the quasipolynomial period

$\left(\begin{array}{ccccccc}M & -M & 0 & 0 & \cdots & 0 & 0 \\ M & 0 & -M & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ M & 0 & 0 & 0 & \cdots & 0 & -M \\ 0 & M & -M & 0 & \cdots & 0 & 0 \\ 0 & M & 0 & -M & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & M & 0 & 0 & \cdots & 0 & -M \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & M & -M \\ B & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & B & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & B\end{array}\right)\left(\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{q}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \\ \beta \\ \beta \\ m_{|M|}^{\perp}\end{array}\right) \quad$ where M is the

- Cramer's Rule \rightsquigarrow vertex denominator divides a subdet. of A.
- Period of quasipoly. divides Icm of all such subdet's, $\operatorname{Icmd}(A)$.
- A square board simplifies. The structure of A^{\prime} is predictable.

The structure of A^{\prime}

$$
A^{\prime}=\left(\begin{array}{ccccccc}
M & -M & 0 & 0 & \cdots & 0 & 0 \\
M & 0 & -M & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
M & 0 & 0 & 0 & \cdots & 0 & -M \\
0 & M & -M & 0 & \cdots & 0 & 0 \\
0 & M & 0 & -M & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & M & 0 & 0 & \cdots & 0 & -M \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & M & -M
\end{array}\right)
$$

This reminds us of the incidence matrix for the complete graph K_{q} :

$$
D\left(K_{q}\right)=\left(\begin{array}{cccccccccc}
1 & 1 & \cdots & 1 & 0 & 0 & \cdots & 0 & \cdots & 0 \\
-1 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & \cdots & 0 \\
0 & -1 & \cdots & 0 & -1 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & -1 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots & & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 & \cdots & 1 \\
0 & 0 & \cdots & -1 & 0 & 0 & \cdots & -1 & \cdots & -1
\end{array}\right)
$$

The structure of F^{T}

For matrices $A=\left(a_{i j}\right)_{m \times k}$ and $B=\left(b_{i j}\right)_{n \times 1}$, the
Kronecker product $A \otimes B$ is defined to be the $m n \times k l$ block matrix

$$
\left[\begin{array}{c:c:c}
a_{11} B & \cdots & a_{1 k} B \\
\hdashline \vdots & \ddots & \vdots \\
\hdashline a_{m 1} B & \cdots & a_{m k} \bar{B}
\end{array}\right] .
$$

We have $\left(A^{\prime}\right)^{T}=D\left(K_{q}\right) \otimes M^{T}$

- M is the $m \times 2$ moves matrix
- $D\left(K_{q}\right)$ is the incidence matrix for the complete graph K_{q}.

About Kronecker Products

About Kronecker products:

- $A \otimes B$ and $B \otimes A$ only differ by row and column switchings.
- For $A_{m \times m}$ and $B_{n \times n}$, $\operatorname{det}(A \otimes B)=\operatorname{det}(A)^{n} \operatorname{det}(B)^{m}$.
- Calculating Icmd $(A \otimes B)$ appears difficult for generic A, B.
- We aim to simplify Icmd $\left(M^{T} \otimes D\left(K_{q}\right)\right)$.
- Funny story.

Icmd result

Theorem (Hanusa, Zaslavsky, 2008) Given $M_{m \times 2}$ and $q \geq 1$,
$\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{Icm}\left((\operatorname{Icmd} M)^{q-1}, \operatorname{LCM}\left(\prod_{(I, J) \in \mathcal{K}} \operatorname{det} M^{I, J}\right)\right)$,
The LCM is over disjoint multisubsets / and J of $[\mathrm{m}]$ of size $\lfloor q / 2\rfloor \ldots$

- Icmd $\left(M \otimes D\left(K_{q}\right)\right)$ is simply an Icm over entries of M.

Icmd result

$\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{Icm}\left((\operatorname{Icmd} M)^{q-1}, \underset{\mathcal{K}}{\operatorname{CM}}\left(\prod_{(I, J) \in \mathcal{K}} \operatorname{det} M^{\prime, J}\right)\right)$,
The LCM is over disjoint multisubsets I and J of $[m]$ of size $\lfloor q / 2\rfloor$,

$$
\text { and } M^{I, J}=\left(\begin{array}{ll}
\Pi m_{i 1} & \Pi m_{i 2} \\
\prod m_{j 1} & \Pi m_{j 2}
\end{array}\right) .
$$

Example: For $M_{4 \times 2}$, we have $m=4$.
Find all pairs (I, J) of disjoint $\lfloor q / 2\rfloor$-member multisubsets of [4]:

$$
\begin{array}{cc}
\left(\left\{1^{a}\right\},\left\{2^{b}, 3^{c}, 4^{d}\right\}\right), & \left(\left\{2^{b}\right\},\left\{1^{a}, 3^{c}, 4^{d}\right\}\right), \\
& \left(\left\{3^{c}\right\},\left\{1^{a}, 2^{b}, 4^{d}\right\}\right), \\
\left(\left\{4^{d}\right\},\left\{1^{a}, 2^{b}, 3^{c}\right\}\right), \\
\left(\left\{1^{a}, 2^{b}\right\},\left\{3^{c}, 4^{d}\right\}\right), \quad\left(\left\{1^{a}, 3^{c}\right\},\left\{2^{b}, 4^{d}\right\}\right), \quad\left(\left\{1^{a}, 4^{d}\right\},\left\{2^{b}, 3^{c}\right\}\right),
\end{array}
$$

Icmd result

$\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{Icm}\left((\operatorname{lcmd} M)^{q-1}, \underset{\mathcal{K}}{\operatorname{LCM}}\left(\prod_{(I, J) \in \mathcal{K}} \operatorname{det} M^{\prime, J}\right)\right)$,
The LCM is over disjoint multisubsets I and J of $[m]$ of size $\lfloor q / 2\rfloor$,

$$
\text { and } M^{I, J}=\left(\begin{array}{ll}
\Pi m_{i 1} & \Pi m_{i 2} \\
\Pi m_{j 1} & \Pi m_{j 2}
\end{array}\right) .
$$

Example: For $M_{4 \times 2}, m=4$. Consider $(I, J)=\left(\left\{1^{a}, 2^{b}\right\},\left\{3^{c}, 4^{d}\right\}\right)$.

for all a, b, c, and d such that $a+b=c+d=\lfloor q / 2\rfloor$.

Bishop example

Example: When $P=$ 需 (bishop),

$$
M=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=M^{T}
$$

Applying the theorem,

- $(I, J)=\left(\left\{1^{p}\right\},\left\{2^{p}\right\}\right)$.
- $\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{Icm}\left(2^{q-1}, \operatorname{LLCM}_{p=2}^{\lfloor q / 2\rfloor}\left((-1)^{p}-1^{p}\right)^{\lfloor q / 2 p\rfloor}\right)$.
- The LCM term generates powers of 2 no larger than $2^{q / 2}$.
- Hence, $\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=2^{q-1}$.
- And our quasipolynomial period must divide 2^{q-1}

Back to that funny story...

Sketch of Kronecker theorem proof

$\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{Icm}\left((\operatorname{Icmd} M)^{q-1}, \operatorname{LCM}_{\mathcal{K}}\left(\prod_{(I, J) \in \mathcal{K}} \operatorname{det} M^{\prime, J}\right)\right)$,

Goal: Show that every $N_{I \times I}$ subdet. of $M \otimes D\left(K_{q}\right)$ divides RHS.

- Consider only N such that $\operatorname{det}(N) \neq 0$.
- N is a choice of I rows and I columns from $M \otimes D\left(K_{q}\right)$
- Same as a choice of I vertices and I edges from K_{q}, with up to m copies of each vertex and up to two copies of an edge.

$$
M \otimes D\left(K_{q}\right)=\left(\begin{array}{cc}
m_{11} D\left(K_{q}\right) \\
m_{21} D K_{q} & m_{12} D\left(K_{q}\right) \\
m_{22} D K_{q} \\
m_{m 1} D\left(K_{q}\right) & m_{m 2} D\left(K_{q}\right)
\end{array}\right)
$$

Sketch of Kronecker theorem proof

- When two rows correspond to the same vertex v, the rows contain the same entries except for different multipliers $m_{i k}$.

$$
\left(\begin{array}{cc}
m_{11} D\left(K_{q}\right) & m_{12} D\left(K_{q}\right) \\
m_{21} D\left(K_{q}\right) & m_{22} D\left(K_{q}\right) \\
\vdots \\
m_{m 1} D\left(K_{q}\right) & m_{m 2} D\left(K_{q}\right)
\end{array}\right) \quad\left(\begin{array}{ccccccccc}
: & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
m_{i 1} & -m_{i 1} & 0 & \cdots & 0 & m_{i 2} & 0 & \cdots & -m_{i 2} \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots & \cdots & \vdots \\
m_{j 1} & -m_{j 1} & 0 & \cdots & 0 & m_{j 2} & 0 & \cdots & -m_{j 2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots
\end{array}\right)
$$

- A vertex chosen three or more times would imply lin. dep.
- Simplify det N when a vertex is chosen twice. (This generates a factor of $\operatorname{det} M^{i, j}$).

$$
\left(\begin{array}{ccccccccc}
: & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
m_{i 1} & -m_{i 1} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 0 & m_{j 2} & 0 & \cdots & -m_{j 2} \\
\vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots
\end{array}\right)
$$

Sketch of Kronecker theorem proof

- Afterwards, every column has at most two entries.
- If a row (or column) has exactly one non-zero entry, expand.
- Then every row has exactly two non-zero entries as well.
- This matrix breaks down as a product of incidence matrices of weighted cycles, each of which basically contributes $\operatorname{det} M^{I, J}$.

$$
\left(\begin{array}{cccccc}
y_{1} & 0 & 0 & 0 & 0 & -z_{6} \\
-z_{1} & y_{2} & 0 & 0 & 0 & 0 \\
0 & -z_{2} & y_{3} & 0 & 0 & 0 \\
0 & 0 & -z_{3} & y_{4} & 0 & 0 \\
0 & 0 & 0 & -z_{4} & y_{5} & 0 \\
0 & 0 & 0 & 0 & -z_{5} & y_{6}
\end{array}\right)
$$

Not Queens

When $M=\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ 1 & 1 \\ 1 & -1\end{array}\right)$, again $\operatorname{Icmd}(M)=2$.
Calculate $\operatorname{det} M^{I, J}$ for each pair (I, J):

- For example, when $I=\left\{3^{c}\right\}$ and $J=\left\{1^{a}, 2^{b}, 4^{d}\right\}$, and

$$
M^{I, J}=\left(\begin{array}{cc}
1^{c} & 1^{c} \\
1^{a} 0^{b} 1^{d} & 0^{a} 1^{b}(-1)^{d}
\end{array}\right) .
$$

where $c=a+b+d=\lfloor q / 2\rfloor$.

- The only non-trivial case is when $a=b=0$. Therefore $c=d=\lfloor q / 2\rfloor$ and $\operatorname{det} M^{I, J}=0$ or -2 .
- This implies that the LCM in the theorem divides 2^{q-1}.

We conclude that $\operatorname{lcmd}\left(M \otimes D\left(K_{q}\right)\right)=2^{q-1}$.

Not Nightriders

Consider $M=\left(\begin{array}{cc}1 & 2 \\ 2 & 1 \\ 1 & -2 \\ 2 & -1\end{array}\right)$.

- The submatrices

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 2 \\
1 & -2
\end{array}\right) \text {, and }\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)
$$

have determinants $-3,-4$, and -5 ; hence $\operatorname{Icmd}(M)=60$.

- We have the same multisubsets of [4] as before.
- $\operatorname{det} M^{I, J}$ is the same form in all cases: $\pm 2^{u}\left(2^{2\lfloor q / 2\rfloor-2 u} \pm 1\right)$, where u is a number between 0 and $\lfloor q / 2\rfloor$.

Not Nightriders

We conclude that

$$
\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{lcm}\left(60^{q-1}, \underset{\substack{1 \leq p \leq q / 2 \\ 0 \leq u \leq p-1}}{\operatorname{LCM}}\left(2^{2 p-2 u} \pm 1\right)^{\lfloor q / 2 p\rfloor}\right) .
$$

When $q=8, \operatorname{lcmd}\left(M \otimes D\left(K_{8}\right)\right)=$

$$
\begin{gathered}
\operatorname{Icm}\left(60^{7},(4 \pm 1)^{\lfloor 8 / 2\rfloor},(16 \pm 1)^{\lfloor 8 / 4\rfloor},(64 \pm 1)^{\lfloor 8 / 6\rfloor},(256 \pm 1)^{\lfloor 8 / 8\rfloor}\right) \\
=60^{7} \cdot 7 \cdot 13 \cdot 17^{2} \cdot 257
\end{gathered}
$$

Not Nightriders

The first few values of q give the following numbers:

q	$\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)$	$($ factored $)$
2	60	60^{1}
3	3600	60^{2}
4	3672000	$60^{3} \cdot 17$
5	220320000	$60^{4} \cdot 17$
6	1202947200000	$60^{5} \cdot 7 \cdot 13 \cdot 17$
7	72176832000000	$60^{6} \cdot 7 \cdot 13 \cdot 17$
8	18920434740480000000	$60^{7} \cdot 7 \cdot 13 \cdot 17^{2} \cdot 257$
9	1135226084428800000000	$60^{8} \cdot 7 \cdot 13 \cdot 17^{2} \cdot 257$
10	952295753183943168000000000	$60^{9} \cdot 7 \cdot 11 \cdot 13 \cdot 17^{2} \cdot 31 \cdot 41 \cdot 257$

View of our wandering from above

- Generalize n-Queens to q-Queens and beyond.
- Apply inside-out polytope theory to prove formula existence.
- Need to know the period; aim to find $\operatorname{Icmd}(A)$.
- On a rectangular board, $\operatorname{Icmd}(A)=\operatorname{Icmd}\left(M^{T} \otimes D\left(K_{q}\right)\right)$.
- Prove a theorem that applies to find Icmd $\left(M \otimes D\left(K_{q}\right)\right)$.
- The theorem applies for $M_{2 \times 2}$.

Open problems

- A better way to find the period? (LCMD is "bad")
\otimes What goes wrong with more than two columns?
¿ Is a formula too much to ask?
$\operatorname{Icmd}\left(M \otimes D\left(K_{q}\right)\right)=\operatorname{Icm}\left((\operatorname{Icmd} M)^{q-1}, \operatorname{LCM}_{\mathcal{K}}\left(\prod_{(I, J) \in \mathcal{K}} \operatorname{det} M^{\prime, J}\right)\right)$,
$p \cdot q$ When do two multivariate binomials have a common divisor?

$$
\left(w x^{2} y-z^{2} u^{2}\right) \text { and }\left(w y^{3}-x z^{2} u\right)
$$

Thank you

Slides available: people.qc.cuny.edu/chanusa $>$ Talks
圊 Matthias Beck and Thomas Zaslavsky, Inside-out polytopes.
Adv. Math. 205:1, 134-162. (2006)
(in Christopher R. H. Hanusa and Thomas Zaslavsky, Determinants in the Kronecker product of matrices:
The incidence matrix of a complete graph. Lin. Multilin. Alg. 59, 399-411. (2011)
(i. Seth Chaiken, Christopher R. H. Hanusa and Thomas Zaslavsky, Mathematical Analysis of a q-Queens Problem. In preparation.

