A q-Queens Problem

Christopher R. H. Hanusa Queens College, CUNY

Joint work with

Thomas Zaslavsky, Binghamton University (SUNY) and Seth Chaiken, University at Albany (SUNY)

$$
\text { qc.edu/chanusa }>\text { Research }>\text { Talks }
$$

When Queens Attack!

A queen is a chess piece that can move horizontally, vertically, and diagonally.

- Two pieces are attacking when one piece can move to the other's square.
- A configuration is a placement of chess pieces on a chessboard.
- A configuration is nonattacking if no two pieces are attacking.

Question: How many nonattack'g queens MIGHT fit on a chessboard?

The 8-Queens Problem

Q: In how many ways

U: Can you place 8 nonattacking queens on an 8×8 chessboard?
A: 92

The n-Queens Problem: Find a formula for the number of nonattacking configurations of n queens on an $n \times n$ chessboard.

n	1	2	3	4	5	6	7	8	9	10
$\#$	1	0	0	2	10	4	40	92	352	724

From n-Queens to q-Queens

The n-Queens Problem:
\# nonatt. configs of n queens on a $n \times n$ square board

A q-Queens Problem:

\# nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q. \# of pieces in config.
- A piece \mathbb{P}. A set of basic moves.
- A board \mathcal{B}.

A convex polygon and its dilations.

A piece \mathbb{P} is defined by its moves $(c, d) \in \mathbf{M}$.

$$
(x, y) \longrightarrow(x, y)+\alpha(c, d) \text { for } \alpha \in \mathbb{Z}
$$

宸 Queen:

$$
\mathbf{M}=\begin{aligned}
& \{(1,0),(0,1), \\
& (1,1),(1,-1)\}
\end{aligned}
$$

畀 Bishop:

$$
\mathbf{M}=\{(1,1),(1,-1)\}
$$

© Nightrider:

$$
\mathbf{M}=\begin{aligned}
& \{(1,2),(1,-2), \\
& (2,1),(2,-1)\}
\end{aligned}
$$

From n-Queens to q-Queens

A q-Queens Problem:

\# nonatt. configs of q pieces \mathbb{P} on dilations of a polygonal board \mathcal{B}

- A number q. \# of pieces in config.
- A piece \mathbb{P}. A set of basic moves.
- A board \mathcal{B}. A convex polygon and its dilations.

A board is the set of integral points on the interior of a dilation of a rational convex polygon $\mathcal{B} \subset \mathbb{R}^{2}$

A q-Queens Problem

Our Quest: Find a formula for the number of nonattacking configurations of q pieces \mathbb{P} inside dilations of \mathcal{B}.

Theorem: (CZ'05, CHZ'14)
Given q, \mathbb{P}, and \mathcal{B}, the number of nonattacking configurations of q pieces \mathbb{P} inside $t \mathcal{B}$ is a quasipolynomial function of t.

Definition: A quasipolynomial is a function $f(t)$ on $t \in \mathbb{Z}_{+}$s.t. $f(t)=c_{d} t^{d}+c_{d-1} t^{d-1}+\cdots+c_{0}$, where each c_{i} is periodic in t.

Example. The number of ways to place two nightriders on an $n \times n$ chessboard is:

$$
u_{ŋ(}(2 ; n)= \begin{cases}\frac{n^{4}}{2}-\frac{5 n^{3}}{6}+\frac{3 n^{2}}{2}-\frac{2 n}{3} & \text { for even } n \\ \frac{n^{4}}{2}-\frac{5 n^{3}}{6}+\frac{3 n^{2}}{2}-\frac{7 n}{6} & \text { for odd } n\end{cases}
$$

Proof uses Inside-out polytopes

Two pieces \mathbb{P} in positions $\left(x_{i}, y_{i}\right)$ and $\left(x_{j}, y_{j}\right)$ inside $t \mathcal{B}$ are attacking if:

$$
\left(x_{i}, y_{i}\right)-\left(x_{j}, y_{j}\right)=\alpha(c, d) \stackrel{\text { move eqn. }}{\longleftrightarrow} d\left(x_{i}-x_{j}\right)=c\left(y_{i}-y_{j}\right)
$$

With two pieces, a move equation defines a forbidden hyperplane in $\mathcal{B}^{2} \subset \mathbb{R}^{4}$.

Our quest becomes:
Count lattice points inside \mathcal{B}^{q} that avoid forbidden hyperplanes.

Inside-out polytope!
Apply theory of
Beck and Zaslavsky.

- Answer is a quasipolynomial \bullet degree $2 q \bullet \operatorname{vol}\left(\mathcal{B}^{q}\right) \rightsquigarrow$ initial term - Inclusion-Exclusion for exact formula (later!)

Computing formulas experimentally

Restatement: The number of ways to place $q \mathbb{P}$-pieces inside a t dilation of \mathcal{B} is a quasipolynomial:
$u_{\mathbb{P}}(q ; t)=$

$$
\left\{\begin{array}{cc}
c_{2 q, 0} t^{2 q}+\cdots+c_{1,0} t+c_{0,0} & t \equiv 0 \\
c_{2 q, 1} t^{2 q}+\cdots+c_{1,1} t+c_{0,1} & t \equiv 1 \bmod p \\
\vdots & \\
c_{2 q, p-1} t^{2 q}+\cdots+c_{1, p-1} t+c_{0, p-1} & t \equiv p-1 \bmod p
\end{array}\right\}
$$

Consequence: If we can prove what the period is (or a bound), then with enough data we can solve for the coefficients!

Gives a proof of correctness for $u_{\mathbb{P}}(q ; t)$!

Enough data?

Let me introduce Václav Kotěšovec:

- Comprensive Book
- Tables of Data

- Conjectured Formulas
- Essential check to our theory

Non-attacking chess pieces $6^{\text {th }}$ edition

Collecting enough data is HARD for a large period. ©

Imp. Q. What is the period? Thm. (qq.VI) Bishops' period is 2.
Conj. (qq.IV, K.) Queens' period is $\operatorname{Icm}\left(\left\{1, \ldots\right.\right.$, fibonacciq$\left.\left._{q}\right\}\right)!?!$ 5:60

Discrete Fibonacci spiral!

Upper Bound: LCM of denoms of facet/hyperplane intersection pts.

Deriving formulas theoretically

Our Quest: Count lattice points inside \mathcal{P} avoiding hyperplanes.
Use Möbius Inversion, an extension of Inclusion/Exclusion:

- Hyperplane intersections are subspaces w/complex interactions
- Form the poset of subspace inclusion. $\mu(\mathcal{U})=-\sum_{\mathcal{T}<\mathcal{U}} \mu(\mathcal{T})$
- Find \# lattice points in each subspace, calculate $\sum_{\mathcal{U}} \mu(\mathcal{U})|\mathcal{U}|$

Deriving formulas theoretically

Derive exact formulas for leading coeffs of quasipolynomial:
\# Interior integer points NOT in the hyperplane arrangement is given by Möbius inversion on points IN the arrangement.

Calculate poset of multiway intersections of hyperplanes
For each $\mathcal{U} \cap \mathcal{B}^{q}$, count number of lattice points

Apply Möbius Inversion! (And place the other $q-k$ pieces!)
On a square board, $u_{\mathbb{P}}(q ; n)=\frac{1}{q!} \sum_{\mathcal{U} \in \mathscr{L}(\mathscr{P} \mathbb{P})} \mu(\mathcal{U}) \alpha(\mathcal{U} ; n) n^{2 q-2 k}$.

Subspaces from two hyperplanes (Codimension 2)

How might two attack equations interact?
 And how do we count them?

Four pieces

\mathbb{P}_{1} attacks \mathbb{P}_{2} on any slope.
\mathbb{P}_{3} attacks \mathbb{P}_{4} on any slope.
[No interaction.]
(Count \# ways two in a row) ${ }^{2}$.

Two pieces.

\mathbb{P}_{1} attacks \mathbb{P}_{2} on any slope. \mathbb{P}_{1} attacks \mathbb{P}_{2} on another slope.
[$\Rightarrow \mathbb{P}_{1}$ and \mathbb{P}_{2} share a point.]
Count \# of points on board.

Three pieces

\mathbb{P}_{1} attacks \mathbb{P}_{2} on any slope. \mathbb{P}_{2} attacks \mathbb{P}_{3} on another slope.
[No restriction on \mathbb{P}_{1} vs. \mathbb{P}_{3}.]
Cases based on actual slopes.

Three pieces

\mathbb{P}_{1} attacks \mathbb{P}_{2} on any slope.
\mathbb{P}_{2} attacks \mathbb{P}_{3} on same slope.
$\left[\Rightarrow \mathbb{P}_{1}\right.$ and \mathbb{P}_{3} also attack.]
Count \# of ways three in a row.

$$
\checkmark \text { Codim } 3 \text { for Partial Queens } \mathbb{P}=\mathbb{Q}^{h k} \text { : }
$$

- explicit $u_{\mathbb{P}}(3 ; n) \quad$ - leading 4 coeffs of $u_{\mathbb{P}}(q ; n)$; period of 5-7.

A (not-very-useful) formula for n-Queens

Set $q=n$ to give the first closed-form formula for the n-Queens Problem:

Theorem

The number of ways to place n unlabelled copies of a rider piece \mathbb{P} on a square $n \times n$ board so that none attacks another is

$$
\frac{1}{n!} \sum_{i=1}^{2 n} n^{2 n-i} \sum_{\kappa=2}^{2 i}(n)_{\kappa} \sum_{\nu=\lceil\kappa / 2\rceil}^{\min (i, 2 \kappa-2)} \sum_{\left[\mathcal{U}_{\kappa}^{\nu}\right]: \mathcal{U}_{\kappa}^{\nu} \in \mathscr{L}\left(\mathscr{A}_{\mathbb{P}}^{\infty}\right)} \mu\left(\hat{0}, \mathcal{U}_{\kappa}^{\nu}\right) \frac{\bar{\gamma}_{i-\nu}\left(\mathcal{U}_{\kappa}^{\nu}\right)}{\left|\operatorname{Aut}\left(\mathcal{U}_{\kappa}^{\nu}\right)\right|}
$$

This formula is very complicated but it is explicitly computable.

Brief Aside

I've never used so many variables!

- Blackboard letters: $\mathbb{B N P P Q R Z}$
- Bold letters: abcdxyzILM β
- Callig. letters: $\mathscr{A} \mathcal{B C D E F G H I J K \mathscr { L } M N O P Q \mathscr { S } T \mathcal { L } \mathcal { X } \mathcal { Y Z }}$
- Greek letters: $\alpha \beta \gamma \delta \varepsilon \zeta \theta \kappa \lambda \mu \nu \xi \pi \varphi \omega \mathrm{AB} \triangle Г \mathrm{H} \wedge П \Sigma \psi$
- upper case: ABCDEFGHIJKLMNOPQRSTUVWXYZ
- lower case: abcdefghijklmnopqrstuvwxyz
(That's 102 variables!!! Plus the reuse of indices!)

What is next?

What Questions Are Interesting?

- Fun test case for Ehrhart Theory (lattice point) questions.
- Period of quasipolynomial $\neq \mathrm{LCM}$ of denominators
- Special pieces
- One-move riders show that period of quasip. depends on move
- Other fairy pieces (Progress made with Arvind Mahankali)
- Special boards
- Rook placement theory on other boards
- Nice pieces on nice boards (Angles of 45, 90, 135 degrees)
- Determining all subspaces \mathcal{U}; What is structure of posets?
- Discrete Geometry: Fibonacci spiral.

Thank you!

Chaiken, Hanusa, Zaslavsky:

Our "A q-Queens Problem" Series:
I. General theory. Electronic J Comb 2014
II. The square board. J Alg Comb 2015
III. Partial queens. Australasian J Comb 2019
IV. Attacking config's and their denom's. Discrete Math 2020
V. A few of our favorite pieces. J Korean Math Soc 202?
VI. The bishops' period. Ars Math Contemp 2019
VII. Combinatorial types of riders. Australasian J Comb. 2020

Slides available: qc.edu/chanusa $>$ Research $>$ Talks
3D Printed Mathematical Jewelry: hanusadesign.com

